摘要:
A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.
摘要:
A system for recognizing various human and creature motion gaits and behaviors is presented. These behaviors are defined as combinations of “gestures” identified on various parts of a body in motion. For example, the leg gestures generated when a person runs are different than when a person walks. The system described here can identify such differences and categorize these behaviors. Gestures, as previously defined, are motions generated by humans, animals, or machines. Where in the previous patent only one gesture was recognized at a time, in this system, multiple gestures on a body (or bodies) are recognized simultaneously and used in determining behaviors. If multiple bodies are tracked by the system, then overall formations and behaviors (such as military goals) can be determined.
摘要:
A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.
摘要:
A system for recognizing various human and creature motion gaits and behaviors is presented. These behaviors are defined as combinations of “gestures” identified on various parts of a body in motion. For example, the leg gestures generated when a person runs are different than when a person walks. The system described here can identify such differences and categorize these behaviors. Gestures, as previously defined, are motions generated by humans, animals, or machines. Multiple gestures on a body (or bodies) are recognized simultaneously and used in determining behaviors. If multiple bodies are tracked by the system, then overall formations and behaviors (such as military goals) can be determined.
摘要:
A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.
摘要:
A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.
摘要:
A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.
摘要:
A real-time computer vision system tracks one or more objects moving in a scene using a target location technique which does not involve searching. The imaging hardware includes a color camera, frame grabber and processor. The software consists of the low-level image grabbing software and a tracking algorithm. The system tracks objects based on the color, motion and/or shape of the object in the image. A color matching function is used to compute three measures of the target's probable location based on the target color, shape and motion. The method then computes the most probable location of the target using a weighting technique. Once the system is running, a graphical user interface displays the live image from the color camera on the computer screen. The operator can then use the mouse to select a target for tracking. The system will then keep track of the moving target in the scene in real-time.
摘要:
A system and method tracks the movements of a driver or passenger in a vehicle (ground, water, air, or other) and controls devices in accordance with position, motion, and/or body or hand gestures or movements. According to one embodiment, an operator or passenger uses the invention to control comfort or entertainment features such the heater, air conditioner, lights, mirror positions or the radio/CD player using hand gestures. An alternative embodiment facilitates the automatic adjustment of car seating restraints based on head position. Yet another embodiment is used to determine when to fire an airbag (and at what velocity or orientation) based on the position of a person in a vehicle seat. The invention may also be used to control systems outside of the vehicle. The on-board sensor system would be used to track the driver or passenger, but when the algorithms produce a command for a desired response, that response (or just position and gesture information) could be transmitted via various methods (wireless, light, whatever) to other systems outside the vehicle to control devices located outside the vehicle. For example, this would allow a person to use gestures inside the car to interact with a kiosk located outside of the car.
摘要:
A real-time computer vision system tracks one or more objects moving in a scene using a target location technique which does not involve searching. The imaging hardware includes a color camera, frame grabber and processor. The software consists of the low-level image grabbing software and a tracking algorithm. The system tracks objects based on the color, motion and/or shape of the object in the image. A color matching function is used to compute three measures of the target's probable location based on the target color, shape and motion. The method then computes the most probable location of the target using a weighting technique. Once the system is running, a graphical user interface displays the live image from the color camera on the computer screen. The operator can then use the mouse to select a target for tracking. The system will then keep track of the moving target in the scene in real-time.