Abstract:
A system and method is provided for scheduling data packets. The system includes one or more packet engines configured to provide one or more congestion indications for a plurality of connections of a communication link. The system also includes a packet scheduler configured to receive the one or more congestion indications, estimate a link rate of the communication link using the one or more congestion indications and classification information, and schedule the data packets for transmission via the plurality of connections using the estimated link rate and the classification information.
Abstract:
A system and method is provided for optimizing network traffic. The system includes a packet engine of a plurality of packet engines configured to acquire a data packet, to store the data packet in a queue, and to provide a request including a packet token representing the data packet, information regarding the size of the data packet, and a connection token. The system also includes a packet scheduler configured to receive the request; schedule the data packet using the connection token and the information regarding the size of the data packet; and provide the packet token and a notification to the packet engine for allowing the packet engine for transmitting the data packet.
Abstract:
An appliance for controlling data transmission is described. The appliance includes a packet engine configured to acquire data regarding a flow of first data packets over a link and to determine transport communication protocol (TCP) characteristics for the flow. The appliance also includes a data transmission controller configured to receive second data packets, determine a rate of transmission based on the TCP characteristics, and determine, based on one or more criteria, whether to use a rate-based data transmission control to control a transmission of the second data packets. The data transmission controller is also configured to, responsive to determining that a rate-based data transmission control is to be used to control a transmission of the second data packets, cause the packet engine to transmit the second data packets in groups, wherein transmission times of each group of second data packets are determined based on the rate of transmission.
Abstract:
An apparatus and method of providing improved throughput on delay-based congestions comprising a packet engine and a delay-based congestion controller. The packet engine detecting a delay jitter that is caused by a layer 2 retransmission of a data packet, is configured to measure a round trip time (RTT) value. The delay-based congestion controller is configured to receive the RTT value and to determine a smoothed RTT (SRTT) value using the RTT value and one or more moving average functions. The delay-based congestion controller is also configured to, if the SRTT value is smaller than a set minimum SRTT value, assign the SRTT value to the set minimum SRTT value. The delay-based congestion controller is further configured to, if the SRTT value is larger than a set maximum SRTT value, assign the SRTT value to the set maximum SRTT value.
Abstract:
An appliance for controlling data transmission is described. The appliance includes a packet engine configured to acquire data regarding a flow of first data packets over a link and to determine transport communication protocol (TCP) characteristics for the flow. The appliance also includes a data transmission controller configured to receive second data packets, determine a rate of transmission based on the TCP characteristics, and determine, based on one or more criteria, whether to use a rate-based data transmission control to control a transmission of the second data packets. The data transmission controller is also configured to, responsive to determining that a rate-based data transmission control is to be used to control a transmission of the second data packets, cause the packet engine to transmit the second data packets in groups, wherein transmission times of each group of second data packets are determined based on the rate of transmission.
Abstract:
A system and method is provided for optimizing network traffic. The system includes a packet engine of a plurality of packet engines configured to acquire a data packet, to store the data packet in a queue, and to provide a request including a packet token representing the data packet, information regarding the size of the data packet, and a connection token. The system also includes a packet scheduler configured to receive the request; schedule the data packet using the connection token and the information regarding the size of the data packet; and provide the packet token and a notification to the packet engine for allowing the packet engine for transmitting the data packet.