Abstract:
The present disclosure relates to a telecommunications connector having cross-talk compensations, and a method of managing alien crosstalk in such a connector. In one example, the telecommunications connector includes electrical conductors arranged in differential pairs and a circuit board with conductive layers that provide a cross-talk compensation arrangement for applying capacitance between the electrical conductors. The circuit board includes conductive paths that provide capacitive coupling and a conductive plate that intensifies capacitive coupling of the electrical conductors. In another example, the telecommunications connector is used with a twisted pair system. Capacitances applied by the crosstalk compensation arrangement between electrical conductors associated with the pairs are provided such that, for each differential pair, a magnitude of an overall capacitance at a first electrical conductor of a differential pair is approximately equal to a magnitude of an overall capacitance at a second electrical conductor of the differential pair.
Abstract:
A shield cap is mounted to an electrical connector for reducing crosstalk between adjoining electrical connectors. The shield cap includes a body portion and opposite shield plates. The body portion is configured to engage the electrical connector and is formed from a non-conductive material. The opposite shield plates are connected to opposite sides of the body portion and configured to at least partially cover one or more insulation displacement contacts exposed from the electrical connector. The electrical connector includes a wire termination conductor configured to be connected to a wire conductor of a cable. The wire termination conductor is at least partially coated with a shielding layer.
Abstract:
An electrical connector includes a front wire terminal and a rear wire terminal. The front wire terminal and the rear wire terminal are configured to couple to a conductor of a cable. A front signal trace is coupled to the front wire terminal. A rear signal trace is coupled to the rear wire terminal. The front signal trace is positioned adjacent to the rear signal trace. A front mating contact is coupled to the front signal trace. A rear mating contact is coupled to the rear signal trace. The front signal trace conveys an electrical signal between the front wire terminal and the front mating contact. The rear signal trace conveys an electrical signal between the rear wire terminal and the rear mating contact. An electro-mechanical compensation is positioned between the front signal trace and the rear signal trace to control crosstalk between the front signal trace and the rear signal trace.
Abstract:
A telecommunications panel and associated system are disclosed. In one example, the panel includes a panel housing having a first side and a second side, one or more data connectors on the first side, and a power input signal connector on the first side. The panel includes one or more combined power output and data signal connectors on the second side, each of the combined power output and data signal connectors configured to electrically connect to a twisted pair cable and including a plurality of twisted pairs each having first and second wire contacts. The one or more twisted pairs are configured to carry a power signal as a direct current voltage difference between the first and second wire contacts, and the remaining twisted pairs from the plurality of twisted pairs are configured to carry differential data signals. The telecommunications panel is configured to selectably allow pairs of the remaining twisted pairs from the plurality of twisted pairs to cooperate to carry a power signal.
Abstract:
Electrical connector including a plurality of mating conductors. Each of the mating conductors extends between an engagement portion and an interior portion. The engagement portions of the mating conductors are configured to engage contacts of the mating connector. The engagement portions are located proximate to one another at a first nodal region. The interior portions are located proximate to one another at a second nodal region. The electrical connector also includes a first open-ended conductor electrically connected to the engagement portion of a first mating conductor of the plurality of mating conductors and extending from the first nodal region. The electrical connector also includes a second open-ended conductor electrically connected to the interior portion of a second mating conductor of the plurality of mating conductors and extending from the second nodal region. The first open-ended conductor is capacitively coupled to the second open-ended conductor.
Abstract:
An electrical connection system includes various devices and structures for improving alien crosstalk performance in a high density configuration. In certain examples, a plurality of insulation displacement contacts of a connector are arranged at angle and oriented to be symmetrical about an axial of the connector. The connector includes a connector housing and a shield cap configured to at least partially cover the connector housing. The shield cap includes a shield wall and an open side that is not closed by a shield wall. The shield wall exposes a portion of the connector when the shield cap is mounted to the connector housing. When a plurality of such connectors are arranged side by side in a high density configuration, the connectors are aligned such that the open side of the shield cap is arranged close to, or abutted to, the shield wall of the shield cap of an adjacent connector.
Abstract:
An electrical connection system includes various devices and structures for improving alien crosstalk performance in a high density configuration. In certain examples, a plurality of insulation displacement contacts of a connector are arranged at angle and oriented to be symmetrical about an axial of the connector. The connector includes a connector housing and a shield cap configured to at least partially cover the connector housing. The shield cap includes a shield wall and an open side that is not closed by a shield wall. The shield wall exposes a portion of the connector when the shield cap is mounted to the connector housing. When a plurality of such connectors are arranged side by side in a high density configuration, the connectors are aligned such that the open side of the shield cap is arranged close to, or abutted to, the shield wall of the shield cap of an adjacent connector.
Abstract:
The present disclosure relates to a telecommunications connector having cross-talk compensations, and a method of managing alien crosstalk in such a connector. In one example, the telecommunications connector includes electrical conductors arranged in differential pairs and a circuit board with conductive layers that provide a cross-talk compensation arrangement for applying capacitance between the electrical conductors. The circuit board includes conductive paths that provide capacitive coupling and a conductive plate that intensifies capacitive coupling of the electrical conductors. In another example, the telecommunications connector is used with a twisted pair system. Capacitances applied by the crosstalk compensation arrangement between electrical conductors associated with the pairs are provided such that, for each differential pair, a magnitude of an overall capacitance at a first electrical conductor of a differential pair is approximately equal to a magnitude of an overall capacitance at a second electrical conductor of the differential pair.
Abstract:
The present disclosure relates to a telecommunications connector having cross-talk compensations, and a method of managing alien crosstalk in such a connector. In one example, the telecommunications connector includes electrical conductors arranged in differential pairs and a circuit board with conductive layers that provide a cross-talk compensation arrangement for applying capacitance between the electrical conductors. The circuit board includes conductive paths that provide capacitive coupling and a conductive plate that intensifies capacitive coupling of the electrical conductors. In another example, the telecommunications connector is used with a twisted pair system. Capacitances applied by the crosstalk compensation arrangement between electrical conductors associated with the pairs are provided such that, for each differential pair, a magnitude of an overall capacitance at a first electrical conductor of a differential pair is approximately equal to a magnitude of an overall capacitance at a second electrical conductor of the differential pair.
Abstract:
An electrical connector includes a front wire terminal and a rear wire terminal. The front wire terminal and the rear wire terminal are configured to couple to a conductor of a cable. A front signal trace is coupled to the front wire terminal. A rear signal trace is coupled to the rear wire terminal. The front signal trace is positioned adjacent to the rear signal trace. A front mating contact is coupled to the front signal trace. A rear mating contact is coupled to the rear signal trace. The front signal trace conveys an electrical signal between the front wire terminal and the front mating contact. The rear signal trace conveys an electrical signal between the rear wire terminal and the rear mating contact. An electro-mechanical compensation is positioned between the front signal trace and the rear signal trace to control crosstalk between the front signal trace and the rear signal trace.