摘要:
Low resistivity titanium silicide, and semiconductor devices incorporating the same, may be formed by titanium alloy comprising titanium and 1-20 atomic percent refractory metal deposited in a layer overlying a silicon substrate, the substrate is then heated to a temperature sufficient to substantially form C54 phase titanium silicide. The titanium alloy may further comprise silicon and the refractory metal may be Mo, W, Ta, Nb, V, or Cr, and more preferably is Ta or Nb. The heating step used to form the low resistivity titanium silicide is performed at a temperature less than 900° C., and more preferably between about 600-700° C.
摘要:
Low resistivity titanium silicide, and semiconductor devices incorporating the same, may be formed by titanium alloy comprising titanium and 1-20 atomic percent refractory metal deposited in a layer overlying a silicon substrate, the substrate is then heated to a temperature sufficient to substantially form C54 phase titanium silicide. The titanium alloy may further comprise silicon and the refractory metal may be Mo, W, Ta, Nb, V, or Cr, and more preferably is Ta or Nb. The heating step used to form the low resistivity titanium silicide is performed at a temperature less than 900.degree. C., and more preferably between about 600.degree.-700.degree. C.
摘要:
A method of reducing contact resistance of metal silicides to a silicon-containing substrate is provided. The method includes first forming a metal germanium layer over a silicon-containing substrate. An optionally oxygen barrier layer may be formed over the metal germanium layer. Next, the structure containing the metal germanium layer is annealed at a temperature effective in converting at least a portion of the metal germanium layer into a substantially non-etchable metal silicide layer, while forming a Si-Ge interlayer between the substrate and the silicide layer. After annealing, the optional oxygen barrier layer and any remaining metal germanium layer is removed from the substrate.
摘要:
A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additive, over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
摘要:
A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additive, over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
摘要:
Complementary metal oxide semiconductor (CMOS) devices having metal silicide contacts that withstand the high temperature anneals used in activating the source/drain regions of the devices are provided by adding at least one alloying element to an initial metal layer used in forming the silicide.
摘要:
A method of reducing the contact resistance of metal silicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g., Co—Ge or Ti—Ge, two annealing steps are required to provide the lowest resistance phase of those metals, whereas, when Ni is employed, a single annealing step forms the lowest resistance phase of Ni silicide.
摘要:
A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additives over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
摘要:
A method of reducing the contact resistance of metal silicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g., Co—Ge or Ti—Ge, two annealing steps are required to provide the lowest resistance phase of those metals, whereas, when Ni is employed, a single annealing step forms the lowest resistance phase of Ni silicide.
摘要:
A method of substantially reducing Si consumption and bridging during metal silicide contact formation comprising the steps of: (a) forming a metal silicon alloy layer over a silicon-containing substrate containing an electronic device to be electrically contacted, said silicon in said alloy layer being less than about 30 atomic % and said metal is Co, Ni or mixtures thereof; (b) annealing said metal silicon alloy layer at a temperature of from about 300° to about 500° C. so as to form a metal rich silicide layer that is substantially non-etchable compared to said metal silicon alloy or pure metal; (c) selectively removing any non-reacted metal silicon alloy over non-silicon regions; and (d) annealing said metal rich silicide layer under conditions effective in forming a metal silicide phase that is in its lowest resistance phase. An optional oxygen barrier layer may be formed over the metal silicon alloy layer prior to annealing step (b).