Abstract:
A plurality of heaters are disposed end to end within a bore hole of a formation where the bore hole extends from an upper end to a lower end such that a lower heater of the plurality of heaters is proximal to the lower end of the bore hole while every other of the plurality of heaters is distal from the lower end of the bore hole. Each of the plurality of heaters includes a fuel cell stack assembly having a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent. Each of the plurality of heaters has a thermal output that is less than or equal to a predetermined value except the lower heater of the plurality of heaters which has a thermal output that is greater than the predetermined value.
Abstract:
A heater includes a heater housing extending along a heater axis. A fuel cell stack assembly is disposed within the heater housing and includes a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent. A combustor disposed within the heater housing receives an anode exhaust and a cathode exhaust from the fuel cell stack assembly and combusts a mixture of the anode exhaust and the cathode exhaust to produce a heated combustor exhaust. The combustor includes a combustor exhaust outlet for discharging the heated combustor exhaust into the heater housing. The heater housing is heated by the fuel cell stack assembly and the heated combustor exhaust.
Abstract:
A heater includes a heater housing with a fuel cell stack assembly disposed therein. The fuel cell stack assembly includes a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent. The fuel cell stack assembly includes a fuel cell manifold for receiving the fuel within a fuel inlet and the oxidizing agent within an oxidizing agent inlet and distributing the fuel and oxidizing agent to the fuel cells. A fuel supply conduit supplies the fuel to the fuel inlet and an oxidizing agent supply conduit supplies the oxidizing agent to the oxidizing agent inlet. A sonic orifice is disposed between the fuel supply conduit and the fuel inlet or between the oxidizing agent supply conduit and the oxidizing agent inlet, thereby limiting the velocity of the fuel or the oxidizing agent through the sonic orifice.
Abstract:
A heater includes a fuel cell stack assembly disposed within a heater housing and includes a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent. A combustor disposed within the heater housing receives an anode exhaust and a cathode exhaust from the fuel cell stack assembly and combusts a mixture of the anode exhaust and the cathode exhaust to produce a heated combustor exhaust. The combustor includes a combustor exhaust outlet for discharging the heated combustor exhaust into the heater housing. A baffle disposed around the fuel cell stack assembly and the combustor defines a heat transfer channel radially between the heater housing and the baffle. A flow director in fluid communication with the combustor exhaust outlet and the heat transfer channel communicates the heated combustor exhaust to the heat transfer channel.
Abstract:
A heater includes a heater housing extending along a heater axis; a fuel cell stack assembly disposed within the heater housing and having a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent; an electric resistive heating element disposed within the heater housing and electrically connected to the fuel cell stack assembly; and a first thermal switch located between the fuel cell stack assembly and the electric resistive heating element. The first thermal switch is closed to place the fuel cell stack assembly in electrical communication with the electric resistive heating element when the fuel cell stack assembly is electrochemically active and is open to prevent electrical communication between the fuel cell stack assembly and the electric resistive heating element when the fuel cell stack assembly is not electrochemically active.
Abstract:
A heater includes a heater housing extending along a heater axis. A fuel cell stack assembly is disposed within the heater housing and includes a plurality of fuel cells which convert chemical energy from a fuel cell fuel into heat and electricity through a chemical reaction with a fuel cell oxidizing agent. A combustor disposed within the heater housing includes a combustor fuel inlet for introducing the combustor fuel into the combustor, a combustor oxidizing agent inlet for introducing a combustor oxidizing agent into the combustor, and combustor exhaust outlet for discharging a heated combustor exhaust from the combustor. An anode exhaust conduit is connected to the anode exhaust outlet and extends out of the heater housing for selectively communicating a first quantity of the anode exhaust out of the heater housing. The heater housing is heated by the fuel cell stack assembly and the heated combustor exhaust.
Abstract:
A heater includes a heater housing with a support plate secured to one end. A fuel cell stack assembly is disposed within the heater housing and includes a plurality of fuel cells which convert chemical energy from a fuel into heat and electricity through a chemical reaction with an oxidizing agent. The fuel cell stack assembly includes a fuel cell manifold for receiving the fuel and distributing the fuel to the plurality of fuel cells and for receiving the oxidizing agent and distributing the oxidizing agent to the plurality of fuel cells. A fuel supply conduit supplies the fuel to the fuel cell manifold and an oxidizing agent supply conduit supplies the oxidizing agent to the fuel cell manifold. The fuel cell stack assembly is supported on the support plate by one of the fuel supply conduit and the oxidizing agent supply conduit.
Abstract:
A heater assembly includes a plurality of fuel cell stack assemblies which each have a plurality of fuel cells, a fuel inlet, and an air inlet; a fuel supply conduit which communicates fuel to the fuel inlets; and an air supply conduit which communicates air to the air inlets. An orifice is disposed between the fuel supply conduit and the fuel inlet or between the air supply conduit and the air inlet of each fuel cell stack assembly. The plurality of fuel cell stack assemblies are arranged in fuel cell stack assembly groups such that the orifices of each of the fuel cell stack assembly groups are configured to provide a magnitude of restriction that is unique to their respective the fuel cell stack assembly group, thereby providing uniformity of flow of the fuel or the air to the plurality of fuel cell stack assemblies.
Abstract:
A method is provided for operating a heater including a heater housing extending along a heater axis; a plurality of fuel cell stack assemblies disposed within the heater housing along the heater axis and having a plurality of fuel cells which convert chemical energy from a fuel cell fuel into heat and electricity through a chemical reaction with a fuel cell oxidizing agent; and a plurality of combustors disposed within the heater housing along the heater axis. The method includes supplying a combustor fuel to the plurality of combustors, combusting the combustor fuel to produce a heated combustor exhaust when the fuel cell stack assemblies are substantially electrochemically inactive, and using the heated combustor exhaust to elevate the temperature of the fuel cell stack assemblies to be electrochemically active.
Abstract:
A geothermic heater system for heating a geological formation includes a fuel cell stack assembly disposed at the surface of the geological formation and includes a plurality of fuel cells which convert chemical energy from a fuel into electricity through a chemical reaction with an oxidizing agent, thereby producing an anode exhaust and a cathode exhaust. The geothermic fuel cell system also includes a combustor disposed within a bore hole of the geological formation. The combustor combusts a mixture at least one of the anode exhaust and the cathode exhaust to produce a heated combustor exhaust. The combustor discharges the heated combustor exhaust to heat the geological formation.