Abstract:
A motor includes a rotor, a sensor unit, an offset unit, a rectification unit and a modulating unit. The sensor unit outputs a first signal in accordance with a magnetic field variation of the rotor. The offset unit is coupled to the sensor unit, and outputs a second signal in accordance with the first signal. The rectification unit is coupled to the offset unit, and outputs a third signal in accordance with the second signal. The modulating unit is coupled to the rectification unit, and outputs a control signal in accordance with a result by comparing the third signal with a periodic signal. The modulating unit controls a reverse rotation of the rotor smoothly in accordance with the control signal. A control method of the motor is also disclosed.
Abstract:
A motor drive circuit including a back electromotive force detecting module and a processing module is disclosed herein. The back electromotive force detecting module is electrically connected to a single phase DC motor and is configured to detect a back electromotive force of the single phase DC motor and to output a detecting signal correspondingly. The processing module is electrically connected to the back electromotive force detecting module and the single phase DC motor. The processing module is configured to determine the rotation direction of the single phase DC motor according to the detecting signal and a hall signal outputted by a hall element located in the single phase DC motor, and is configured to control the single phase DC motor.