Abstract:
A system is for a machine having an alternating current (AC) power source with a first side and a second side, one or more windings, an AC polarity detector, a Hall effect device, two or more pairs of power switches, and a motor controller. The motor controller determines which of the power switches to open or close to obtain a direction of current flow through the one or more windings based on signals from the AC polarity detector and the Hall effect device.
Abstract:
An electrical combination, a tool system, an electric motor, a battery pack, and operating and manufacturing methods. The tool may include a tool housing, a motor supported by the tool housing, the motor having a nominal outer diameter of up to about 80 millimeters (mm), the motor being operable to output at least about 2760 watts (W), and a tool terminal electrically connected to the motor; a battery pack including a pack housing defining a volume of the battery pack, the volume being up to about 5.2×106 cubic millimeters (mm3), battery cells supported by the pack housing, the battery cells being electrically connected and having a nominal voltage of up to about 80 volts (V), and a pack terminal electrically connectable to the tool terminal to transfer current between the battery pack and the tool; and a controller operable to control the transfer of current.
Abstract:
A motor unit comprises a driving circuit, a control unit, an analog-to-digital converter, a voltage divider, and a voltage converter. The driving circuit is coupled to a motor for driving the motor. The control unit is configured to generate a plurality of control signals to control the driving circuit. The analog-to-digital converter receives an output voltage for generating a digital signal to the control unit. The voltage divider receives an input voltage for generating a first voltage. The voltage converter converts a power supply voltage into the input voltage. The motor unit may execute a prevention mechanism to avoid misjudging the digital signal. The motor unit may be applied to a high-voltage configuration.
Abstract:
A method and circuit for controlling or starting a U-shape single phase synchronous permanent magnetic motor (U-SPSPM motor) having a rotor and a stator and coupled to a single phase alternating current (AC) power source through a switch, including estimating back electromotive force (back-EMF) of the motor based on an observer model with inputs indicative of the measured signals, and triggering the switch to supply power to the motor based on the estimates of the back-EMF.
Abstract:
A method and circuit for controlling or starting a U-shape single phase synchronous permanent magnetic motor (U-SPSPM motor) having a rotor and a stator and coupled to a single phase alternating current (AC) power source through a switch, including estimating back electromotive force (back-EMF) of the motor based on an observer model with inputs indicative of the measured signals, and triggering the switch to supply power to the motor based on the estimates of the back-EMF.
Abstract:
A magnetic sensor integrated circuit, a motor assembly and an application device are provided. The magnetic sensor integrated circuit includes a magnetic field detection circuit. The magnetic field detection circuit includes a magnetic sensing element configured to sense an external magnetic field and output an electrical detection signal, a signal processing unit configured to perform amplification and interference rejection on the electrical detection signal to generate an analog electrical signal, and a comparator configured to compare the analog electrical signal with a reference voltage, and output magnet detection signal corresponding to the external magnetic field. The reference voltage is generated based on an input common-mode voltage of the magnetic field detection circuit.
Abstract:
A current controller for an electric machine that includes an input, an output, a threshold generator and a comparator. The threshold generator stores a scaling factor and includes a PWM module that operates on a reference voltage to generate a threshold voltage. The duty cycle of the PWM module is then defined by the scaling factor. The comparator compares a voltage at the input against the threshold voltage and causes an overcurrent signal to be generated at the output when the voltage at the input exceeds the threshold voltage.
Abstract:
A commutation circuit includes a coil connected to an H bridge, the H bridge including four main switches for reversing polarity and a resulting coil current in the coil. The commutation circuit further includes a voltage source configured to generate a bypass current, and at least one auxiliary switch for controlling the bypass current to thereby decrease a switch current through at least one of the main switches. By generating an appropriate bypass current with help of a voltage source, a switch current through a desired main switch in a leading state can be decreased and eventually brought to zero. Zero current in its turn enables the use of thyristors as main switches as it results in the thyristors to be turned off automatically. Furthermore, decreased switch current at the switching moment reduces switching losses even in different types of switches such as GTOs and IGBTs.
Abstract:
An HVAC control system, associated brushless direct current motor, and methods of operation are disclosed. One such control system includes a brushless direct current motor and an optically-isolated interface exposing control access to the brushless direct current motor. The system includes a first programmable controller electrically connected to the brushless direct current motor, the programmable controller configured to receive a control signal via the optically-isolated interface, and a second programmable controller providing the control signal to the optically-isolated interface.
Abstract:
A motor driving apparatus comprises an H bridge circuit having outputs coupled with a motor coil of a single-phase motor, a hall comparator configured to generate a hall detection signal indicating a position of a rotor of the motor, an electric angle generator configured to generate a pulse signal indicating that the motor rotates by a predetermined electric angle, a current monitoring circuit configured to asserts a zero current detection signal upon detecting a reversed direction of a coil current; a transition trigger circuit configured to assert a transition pulse when a count value of the first counter matches an lead angle set value; a logic circuit configured to transition the H bridge circuit according to a predetermined sequence of states; and a lead angle controller configured to adjust the lead angle set value based on a timing of assertion of the zero current detection signal.