Abstract:
A position detecting device includes an IC package, a first terminal line, a ground terminal line, a power supply terminal line, a second terminal line, a bypass terminal line, motor terminal lines, and a connector portion. A bypass terminal line is positioned on an opposite side of the ground terminal line across the first terminal line or the second terminal line and is connected to a bypass portion of the ground terminal line which connects to the ground connection portion. In the connector portion, the motor terminal line, the bypass terminal line, the second terminal line, the power supply terminal line, and the first terminal line are placed in this order.
Abstract:
A magnetism sensing element is provided to be rotatable relative to permanent magnets and outputs a magnetic force detection value, which corresponds to a perpendicular component of magnetic flux. A Hall IC calculates and outputs an output voltage, which corresponds to a relative rotational angle between the permanent magnets and the magnetism sensing element, based on the magnetic force detection value outputted by the magnetism sensing element. The Hall IC calculates the output voltage as V2=k×arcsin(V1/(VM+α))+Voffset, in which V1, V2, VM, k, α and Voffset indicate the magnetic force detection value, the output voltage, a maximum value of the magnetic force detection value, a gain, a predetermined value and a predetermined offset value.
Abstract:
A terminal arrangement device electrically connects an electric device, which is received in a housing, to an external device, and includes a first connecting terminal fixed to the housing. The first connecting terminal has a first supporting portion and a second supporting portion which are elastically deformable such that an output terminal of the electric device is supported between the first supporting portion and the second supporting portion. The first supporting portion has a flexural rigidity which is different from a flexural rigidity of the second supporting portion.
Abstract:
In a position detector for detecting a position of a detection body, a signal processing circuit processes a signal outputted from a magnetic field detection element. A first storage circuit stores the signal outputted from the magnetic field detection element and outputs a signal to an external device through an output circuit in a normal operation mode. A second storage circuit stores an output value of the first storage circuit. When a malfunction determination circuit determines an instantaneous power interruption mode, a signal route changing circuit prevents a signal transmission between the first storage circuit and the second storage circuit and a signal transmission between the first storage circuit and the output circuit, prevents the second storage circuit from updating data for a certain period of time, and permits the second storage circuit in which updating is prevented to output a signal to the output circuit.
Abstract:
A position detection device includes a magnetic detection element, a wiring, a first component and a second component as a first mold resin, a terminal, and a sensor cover as a second mold resin. The magnetic detection element can detect a change in magnetic field. The wiring is connected to the magnetic detection element. The first component and the second component mold the magnetic detection element and the wiring so that the wiring is exposed. The terminal is connected to the wiring. The sensor cover molds the first component, the second component and the terminal so that the first component and the second component where the magnetic detection element is located are exposed, and has a deformation suppressing portion. The deformation suppressing portion suppresses the deformation of the first component or the second component when the sensor cover is deformed.
Abstract:
A high-side output transistor and a low-side output transistor of an output circuit control voltages of conductors, which connect a power supply terminal and ground, and outputs a voltage signal to an output terminal through an output conductor. A voltage output circuit detects a voltage applied to the high-side output transistor based on a potential difference of a first resistor provided closer to the output terminal side. A comparator circuit outputs a signal to turn off a first switch and a second switch provided in the conductors, when the output voltage of the voltage output circuit exceeds a reference voltage Vr.
Abstract:
A cover device includes a terminal receiving portion and a terminal member while the terminal member is received in the terminal receiving portion. In the terminal member, a third wall connects between one end portion of a first wall, which is directed in an inserting direction of a motor terminal into the terminal receiving portion, and one end portion of a second wall, which is directed in the inserting direction. A length of the third wall, which is measured in a direction directed from a first connection between the first wall and the third wall to a second connection between the second wall and the third wall, is longer than a distance between the first connection and a second inner peripheral surface of the terminal receiving portion and is longer than a length between the second connection and a first inner peripheral surface of the terminal receiving portion.
Abstract:
A terminal insert article includes a metal terminal, and a resin molded article in which the terminal is inserted. The molded article is formed by injection molding. When a position of the molded article into which molten resin is injected at time of the injection molding is referred to as a resin injection position, the resin injection position is formed in a projecting shape. The molded article includes a spherical surface part at an opposite position from the resin injection position. The spherical surface part has a spherical surface shape swollen out in a direction away from the resin injection position. A component that constitutes a rotation angle sensor, which detects a rotation angle of a rotatably-supported shaft, is inserted in the molded article.
Abstract:
A position detecting device includes a first sensor portion having a first mold resin object molded for a first magnetic sensor and a first wiring and a second sensor portion having a second mold resin object molded for a second magnetic sensor and a second wiring. The first sensor portion and the second sensor portion have a protrusion part defined between the first magnetic sensor of the first sensor portion and the second magnetic sensor of the second sensor portion to provide a clearance between the first magnetic sensor and the second magnetic sensor.
Abstract:
A position detection apparatus includes a magnetic generator, a magnetic detector, a storage, and a rotation angle calculator. The rotation angle calculator calculates a relative rotation angle of the magnetic generator with respect to the magnetic detector based on a voltage output from the magnetic detector and a relational expression of θ=sin−1((VH−c)/V0)−b. In the relational expression, the relative rotation angle is defined as θ, the voltage output from the magnetic detector is defined as VH, a true maximum value of the voltage output from the magnetic detector is defined as V0, a first true correction value is defined as b, and a second true correction value is defined as c.
Abstract translation:位置检测装置包括磁性发生器,磁性检测器,存储器和旋转角度计算器。 旋转角度计算器基于从磁性检测器输出的电压和& t = sin-1((VH-c)/ V0)-b的关系式来计算磁性发生器相对于磁性检测器的相对旋转角度 。 在上述关系式中,相对旋转角被定义为θ,从磁探测器输出的电压被定义为VH,被定义为V0,第一真实校正值是从磁探测器输出的电压的真实最大值 定义为b时,和一个第二真修正值定义为c。