Abstract:
Disclosed is a composition and use thereof for the recovery of hydrocarbon fluids from a subterranean reservoir. More particularly, this invention concerns sulfonated epoxy resin polymers comprising an epoxide-containing compound, a primary amino sulfonate, and optionally one or more of a primary monoamine alkylene oxide oligomer, that modify the permeability of subterranean formations and increase the mobilization and/or recovery rate of hydrocarbon fluids present in the formations.
Abstract:
This invention relates to a foam-forming composition and method of use thereof for enhanced oil recovery. Said foam-forming composition comprises an anionic sulfonate surfactant wherein the anionic sulfonate surfactant is biodegradable and has low aquatic toxicity. The method for recovering oil from a reservoir comprises the periodic injection of gas and said foam-forming composition into the reservoir and contacting the oil in the reservoir with the foam so as to assist in the recovery of oil from the reservoir.
Abstract:
The present disclosure provides methods of using a nonionic surfactant for enhanced oil recovery, where the nonionic surfactant is prepared with a double metal cyanide catalyst. The present disclosure also provides for an emulsion that includes carbon dioxide, a diluent and the nonionic surfactant.
Abstract:
The present disclosure provides methods of using a nonionic surfactant for enhanced oil recovery, where the nonionic surfactant is prepared with a double metal cyanide catalyst. The present disclosure also provides for an emulsion that includes carbon dioxide, a diluent and the nonionic surfactant.
Abstract:
The present invention provides processes for making higher molecular weight, functionalized poly(meth)acrylamide polymer products. As an overview, the processes use (trans)amidation techniques in the melt phase to react one or more high molecular weight amide functional polymers or copolymers with at least one co-reactive species comprising at least one labile amine moiety and at least one additional functionality other than amine functionality. In practical effect, the processes of the present invention thus incorporate one or more additional functionalities onto an already formed or partially formed polymer rather than trying to incorporate all functionality via copolymerization techniques as the polymer is formed from constituent monomers. The methods provide an easy way to provide functionalized, high molecular weight poly(meth)acrylamide polymer products.
Abstract:
Embodiments of the present disclosure are directed towards oil recovery compositions. As an example, an oil recovery composition can include a dimeric non-ionic surfactant and carbon dioxide.
Abstract:
This invention relates to a foam-forming composition having good low temperature stability and method of use thereof for enhanced oil recovery. Said foam-forming composition comprises an anionic sulfonate surfactant, preferably an alpha-olefin sulfonate, a alkyl ether solvent, and water and is preferably stable to at least −5 C. A preferred alkyl ether solvent has the formula C8H18O3, C8H16O3, or mixtures thereof. Preferred alpha-olefin sulfonate have 10 to 18 carbons, preferably 12 carbons. A preferred method for recovering oil from a reservoir comprises the periodic injection of gas and said foam-forming composition into the reservoir and contacting the oil in the reservoir with the foam so as to assist in the recovery of oil from the reservoir.
Abstract:
The present disclosure provides methods of using a nonionic surfactant for enhanced oil recovery, where the nonionic surfactant is prepared with a double metal cyanide catalyst. The present disclosure also provides for an emulsion that includes carbon dioxide, a diluent and the nonionic surfactant.
Abstract:
The present disclosure includes a nonionic surfactant and a method of providing the nonionic surfactant, where the nonionic surfactant is soluble in carbon dioxide and is used as part of a dispersion for enhanced crude oil recovery. The nonionic surfactant can be part of an emulsion that includes carbon dioxide and a diluent.
Abstract:
The present disclosure provides methods of using a nonionic surfactant for enhanced oil recovery, where the nonionic surfactant is prepared with a double metal cyanide catalyst. The present disclosure also provides for an emulsion that includes carbon dioxide, a diluent and the nonionic surfactant.