Abstract:
A sound insulation system for use with a vehicle includes a layer of fibrous padding material having a first surface and an opposite second surface. The first surface includes multiple spaced apart recesses. The second surface includes a substantially flat surface portion that extends over two adjacent recesses. The multiple recesses are configured to define multiple voids when the sound insulation system is mounted in the vehicle, thereby enhancing acoustical performance of the sound insulation system.
Abstract:
A sound insulation system for use with a vehicle includes a layer of fibrous padding material having a first surface and an opposite second surface. The first surface includes multiple spaced apart recesses. The second surface includes a substantially flat surface portion that extends over two adjacent recesses. The multiple recesses are configured to define multiple voids when the sound insulation system is mounted in the vehicle, thereby enhancing acoustical performance of the sound insulation system.
Abstract:
A method of making a sound insulating layered composite structure contacting a padding layer having a preformed shaped with a curable liquid composition to form an uncured or partially cured cap layer disposed over at least a portion of the padding layer. An uncured or partially cured cap layer is then cured to form the sound insulating composite structure of the present embodiment. An automobile sound insulating component is made from the method.
Abstract:
The present invention is directed towards an acoustical component for vehicle interior that meets the foregoing needs. The component comprises an air impermeable inner covering layer having a sound reflective surface and one or more perforations therein. The perforations permit the passage of sound therethrough. An outer sound absorbing layer is bonded to the inner covering layer for absorbing the sound passing through the perforations in the inner covering layer.