Coaxial coupler with integrated source/ring detector
    1.
    发明授权
    Coaxial coupler with integrated source/ring detector 失效
    同轴耦合器,集成源/环形探测器

    公开(公告)号:US5418870A

    公开(公告)日:1995-05-23

    申请号:US234065

    申请日:1994-04-28

    摘要: The invention features an optical two-way transmission-receiver communications system utilizing a coaxial coupler having a ring waveguide and a core waveguide. A surface of an integrated source/ring detector substrate is positioned adjacent said coaxial coupler endface. A ring detector on the substrate, which receives light transmissions from the ring waveguide, has an annular opening therein. A light source disposed on the substrate within the annular opening in the ring detector directs light transmissions to the core waveguide of the coaxial coupler. An alignment device positions the substrate with respect to the coaxial coupler so that the light source and detector are respectively aligned with the coaxial coupler core and ring waveguides.

    摘要翻译: 本发明的特征在于利用具有环形波导和核心波导的同轴耦合器的光学双向传输 - 接收机通信系统。 集成源/环检测器基板的表面位于所述同轴耦合器端面附近。 接收来自环形波导的光传输的基板上的环形探测器在其中具有环形开口。 设置在环形探测器中的环形开口内的衬底上的光源将光传输引导到同轴耦合器的芯波导。 对准装置将基板相对于同轴耦合器定位,使得光源和检测器分别与同轴耦合器芯和环形波导对准。

    N-port reconfigurable DWDM multiplexer and demultiplexer
    2.
    发明授权
    N-port reconfigurable DWDM multiplexer and demultiplexer 失效
    N端口可重配置DWDM复用器和解复用器

    公开(公告)号:US6137927A

    公开(公告)日:2000-10-24

    申请号:US216435

    申请日:1998-12-18

    摘要: An N-port optical wavelength division multiplexer and demultiplexer includes two evanescent wave couplers connected by N optical paths. Each of the optical paths includes wavelength-selecting elements that are used to select specific wavelengths of light. Light signals composed of N wavelengths of light introduced to an exterior port in one of the couplers are split substantially equally among all the optical paths within the coupler, so that each optical path exiting the coupler includes light of all the wavelengths initially introduced to the coupler. The wavelength selecting elements disposed on each optical path are situated to direct the light in a manner such that light of only the selected wavelengths interferes constructively at a given exterior coupler port and other wavelengths interfere destructively. Consequently, optical signals composed of N wavelengths may be demultiplexed such that N optical paths carry light having one wavelength. Conversely, N optical paths carrying light signals having only one wavelength can be multiplexed into a signal having wavelengths .lambda..sub.1, .lambda..sub.2, . . . .lambda..sub.N. The multiplexed signal is then coupled into up to M+O exterior ports.

    摘要翻译: N端口光波分复用器和解复用器包括由N个光路连接的两个瞬逝波耦合器。 每个光路包括用于选择特定波长的光的波长选择元件。 在耦合器之一中引入到外部端口的N个波长的光构成的光信号在耦合器内的所有光路中基本上相等地分开,使得离开耦合器的每个光路包括最初引入耦合器的所有波长的光 。 设置在每个光路上的波长选择元件被定位成以使得所选择的波长的光在给定的外部耦合器端口上建设性地干扰并且其它波长相消干涉的方式来引导光。 因此,由N个波长组成的光信号可以被解复用,使得N个光路携带具有一个波长的光。 相反,携带仅具有一个波长的光信号的N个光路可以被复用到具有波长λ1,λ2的信号中。 。 。 然后将复用的信号耦合到多达M + O外部端口。

    Optic coupler
    6.
    发明授权
    Optic coupler 失效
    光耦合器

    公开(公告)号:US4948217A

    公开(公告)日:1990-08-14

    申请号:US300961

    申请日:1989-01-23

    摘要: A low loss fiber optic coupler is fabricated by forming a coupler preform having a plurality of spaced glass cores extending longitudinally through a matrix of glass having a refractive index lower than that of the cores. The preform is heated and stretched to form a glass rod which is then severed into a plurality of units. Heat is applied to the central region of each unit while the ends of the unit are pulled apart to elongate and taper inwardly the heated central region, whereby the cores of the unit are more closely spaced and are of smaller diameter at the central region than they are at the ends of the unit. The unit is then provided with a plurality of optical fibers, one of which extends from each of the cores at the endfaces of the unit. A preferred method of providing the optical fibers involves forming the coupler preform of a matrix glass that is easily dissolved in a solvent. Each of the fiber cores within the matrix is surrounded by a layer of cladding glass that is relatively resistant to dissolving by the solvent. When an end of the unit is immersed in the solvent, the matrix glass dissolves, thereby leaving the unit cores and surrounding solvent-resistant cladding glass protruding from the newly formed endface of the unit.

    摘要翻译: 通过形成具有多个间隔开的玻璃核心的耦合器预制件来制造低损耗光纤耦合器,该玻璃核心纵向延伸穿过折射率低于芯子的折射率的玻璃矩阵。 将预成型件加热并拉伸以形成玻璃棒,然后将其切断成多个单元。 热量被施加到每个单元的中心区域,同时单元的端部被拉开以在加热的中心区域内向内伸长和渐缩,由此该单元的芯更紧密地间隔并且在中心区域具有比它们更小的直径 在单位的末端。 然后,该单元设置有多个光纤,其中一个光纤在单元的端面处从每个芯延伸。 提供光纤的优选方法包括形成易于溶解在溶剂中的基质玻璃的成色剂预成型体。 基体内的每个纤维芯都被一层比较耐溶解溶解的包层玻璃包围。 当单元的一端浸入溶剂中时,基体玻璃溶解,从而使单元芯和周围的耐溶剂包层玻璃从单元的新形成的端面突出。

    MxO multiplex demultiplex component
    7.
    发明授权
    MxO multiplex demultiplex component 失效
    MxO多路复用分量分量

    公开(公告)号:US5636300A

    公开(公告)日:1997-06-03

    申请号:US353822

    申请日:1994-12-12

    IPC分类号: G02B6/28 G02B6/34 H04J14/08

    CPC分类号: G02B6/12011

    摘要: An M.times.O multiplex/demultiplex device is disclosed. An M.times.N coupler is connected to an N.times.O coupler by phase shifting means. The phase shifting means provide N paths between the couplers, each path having an optical path length different from every other optical path length. The coupling region of the M.times.N coupler must provide for substantially uniform division of light power among the coupler branches when M are the launch ports. Similarly, the coupling region of the N.times.O coupler must provide for substantially uniform division of light power among the coupler branches when O are the launch ports. A preferred embodiment includes two fused waveguide fiber couplers with dissimilar waveguide fibers used as the phase shifting means.

    摘要翻译: 公开了一种MxO复用/解复用器件。 MxN耦合器通过相移装置连接到NxO耦合器。 相移装置在耦合器之间提供N个路径,每个路径具有不同于每个其它光路长度的光路长度。 当M是发射端口时,MxN耦合器的耦合区域必须在耦合器分支之间提供基本均匀的光功率划分。 类似地,当O是发射端口时,NxO耦合器的耦合区域必须在耦合器分支之间提供基本上均匀的光功率划分。 优选实施例包括具有用作相移装置的不同波导纤维的两个熔接波导光纤耦合器。

    Method of making low loss fiber optic coupler
    8.
    发明授权
    Method of making low loss fiber optic coupler 失效
    制造低损耗光纤耦合器的方法

    公开(公告)号:US4799949A

    公开(公告)日:1989-01-24

    申请号:US765652

    申请日:1985-08-15

    摘要: A low loss fiber optic coupler is fabricated by forming a coupler preform having a plurality of spaced glass cores extending longitudinally through a matrix of glass having a refractive index lower than that of the cores. The preform is heated and stretched to form a glass rod which is then severed into a plurality of units. Heat is applied to the central region of each unit while the ends of the unit are pulled apart to elongate and taper inwardly the heated central region, whereby the cores of the unit are more closely spaced and are of smaller diameter at the central region than they are at the ends of the unit. The unit is then provided with a plurality of optical fibers, one of which extends from each of the cores at the endfaces of the unit. A preferred method of providing the optical fibers involves forming the coupler preform of a matrix glass that is easily dissolved in a solvent. Each of the fiber cores within the matrix is surrounded by a layer of cladding glass that is relatively resistant to dissolving by the solvent. When an end of the unit is immersed in the solvent, the matrix glass dissolves, thereby leaving the unit cores and surrounding solvent-resistant cladding glass protruding from the newly formed endface of the unit.

    摘要翻译: 通过形成具有多个间隔开的玻璃核心的耦合器预制件来制造低损耗光纤耦合器,该玻璃核心纵向延伸穿过折射率低于芯子的折射率的玻璃矩阵。 将预成型件加热并拉伸以形成玻璃棒,然后将其切断成多个单元。 热量被施加到每个单元的中心区域,同时单元的端部被拉开以在加热的中心区域内向内伸长和渐缩,由此该单元的芯更紧密地间隔并且在中心区域具有比它们更小的直径 在单位的末端。 然后,该单元设置有多个光纤,其中一个光纤在单元的端面处从每个芯延伸。 提供光纤的优选方法包括形成易于溶解在溶剂中的基质玻璃的成色剂预成型体。 基体内的每个纤维芯都被一层比较耐溶解溶解的包层玻璃包围。 当单元的一端浸入溶剂中时,基体玻璃溶解,从而使单元芯和周围的耐溶剂包层玻璃从单元的新形成的端面突出。

    Non-adiabatically-tapered connector
    10.
    发明授权
    Non-adiabatically-tapered connector 失效
    非绝热锥形连接器

    公开(公告)号:US4877300A

    公开(公告)日:1989-10-31

    申请号:US261270

    申请日:1988-10-24

    IPC分类号: G02B6/14 G02B6/26 G02B6/42

    CPC分类号: G02B6/4202 G02B6/262

    摘要: Disclosed is a mode field modifier which can be used in a fiber-to-fiber connector or a source-to-fiber connector. In a downtaper-type mode field modifier embodiment, the modifier comprises a modifier core of refractive index n.sub.1 surrounded by first and second cladding layers having refractive indices n.sub.2 and n.sub.3, respectively. In an uptaper-type mode field modifier embodiment, the modifier comprises a modifier core of refractive index n.sub.1 surrounded by a cladding layer having a refractive index n.sub.2. The refractive indices are such that n.sub.1 >n.sub.2 >n.sub.3. In both embodiments, there is a nonadiabatic taper intermediate the ends of the mode field modifier, whereby a substantial amount of mode coupling occurs therein.