Abstract:
An integrated dynamic bandwidth allocation method and apparatus in a passive optical network (PON) are provided. The bandwidth allocation method performed by an optical line terminal (OLT) includes generating a service level agreement (SLA) table including an SLA required for calculation for bandwidth allocation corresponding to at least one service queue included in at least one optical network unit (ONU) connected to the OLT, calculating maximum allocatable bandwidths for respective predetermined cycles based on the generated SLA table, and, when a service queue requiring bandwidth allocation is present in the ONU, performing bandwidth allocation according to different bandwidth allocation methods based on a priority level of the service queue using the calculated maximum allocatable bandwidths.
Abstract:
Disclosed is a passive optical network system using a time division multiplexing scheme. According to one exemplary embodiment, the passive optical network system includes a plurality of optical network units (ONUs); an optical line terminal (OLT) to be connected to the plurality of ONUs for communication and to transmit and receive an optical signal to and from the plurality of ONUs using a time division multiplexing (TDM) scheme, wherein each of the plurality of ONUs includes a light source that generates an optical signal with a predetermined intensity even in burst-off state; and an optical filter disposed on a receiving path of an optical receiver of the OLT to filter out an optical noise signal received from an ONU in burst-off state among the plurality of ONUs.
Abstract:
Disclosed are a function split structure for a mobile convergence optical transmission network and a method of providing coordinated multi-point technology using the same. The mobile convergence optical transmission network may include a centralized unit (CU), a distributed unit (DU) connected to the CU, a transport node (TN) of an optical transmission network connected to the DU via a first interface, an aggregated unit (AU) connected to a transport unit (TU) of the optical transmission network via the first interface, and a radio unit (RU) connected to the AU via a second interface corresponding to a split structure for a lower layer than the first interface.
Abstract:
Provided are an apparatus and a method for allocating a bandwidth for providing a low-latency fronthaul service in a passive optical network. An bandwidth allocating method performed by a bandwidth allocating apparatus included in an OLT includes receiving an actual report message requesting bandwidth allocation from at least one ONU for wired subscribers connected to the OLT, receiving radio scheduling information for at least one ONU for mobile connected to the OLT from a central unit (CU)/digital unit (DU), generating a virtual report message using the radio scheduling information received from the CU/DU, allocating a transmission bandwidth for the at least one ONU for wired subscribers and the at least one ONU for mobile through the received actual report message and the generated virtual report message, and transmitting the allocated transmission bandwidth to the ONU for wired subscribers and the ONU for mobile using a grant message.
Abstract:
Disclosed is a slice connection method of an optical access network and an optical access network system for slice connection. A slice connection method performed by an optical network unit (ONU) of an optical access network system may include determining a service type of a host device transmitting a service connection request, determining a slice based on the service type, sending a request for connection to the slice to an optical line terminal (OLT), and relaying data transmission and reception between the OLT and the host device when a slice connection response corresponding to the request is received from the OLT.
Abstract:
Wavelength channels used in the optical network system are classified into downstream channels used to transmit optical signals from an optical line terminal (OLT) to an optical network unit (ONU) and upstream channels that are used to transmit optical signals from the ONU to the OLT. The wavelength channels are included in an O-band and may not overlap each other. One of the upstream channels are allocated to a wavelength band (for example, a zero-dispersion window) in which a four-wave mixing occurs. A wavelength spacing between the upstream channels and the downstream channels is determined based on a performance of separating the upstream channels and the downstream channels in a bidirectional optical sub assembly (BOSA) of the ONU. Also, a wavelength spacing between the downstream channels is determined based on a performance of separating the downstream channels in the BOSA.
Abstract:
A method of determining a physical layer wavelength of a tunable optical network unit (ONU) in a time wavelength division multiplexing-passive optical network (TWDM-PON) is provided. First, a receiving wavelength of a tunable receiver is tuned to a downstream wavelength of one of a plurality of operable channels in a TWDM-PON system. Then, it is checked whether the tunable receiver maintains a state of loss of signal (LOS) for a predetermined period of time or the state of LOS is cleared. In response to a determination that the state of LOS is cleared, the ONU performs subsequent link establishment procedures in the channel, and in response to a determination that the state of LOS is maintained, the receiving wavelength of the tunable receiver is changed to a downstream wavelength of another channel.
Abstract:
Disclosed is a method of registering a new optical network unit (ONU) to be performed by an optical line terminal (OLT). The method includes transmitting a ranging notification message to a centralized unit (CU)/distributed unit (DU) to register the new ONU, receiving scheduling information for registering the new ONU from the CU/DU in response to the ranging notification message, transmitting a serial number request message to a service region in which ONUs are present based on the received scheduling information, and when the serial number response message is received from the new ONU in response to the serial number request message, registering the new ONU that transmits a serial number request message. The transmitting of the serial number request message is performed through a multi-quiet zone of a short period.
Abstract:
A cooperative dynamic bandwidth allocation (CO-DBA) method in a structure in which a mobile network and an optical access network are combined allows the mobile network and the optical access network to share mobile scheduling information in advance and allocate bandwidths in advance, and thus prevent a latency in upstream transmission of mobile traffic.
Abstract:
A method of tuning a wavelength in a TWDM-PON which has a plurality of operable channels is provided. First, a second channel is added as an operating channel of the TWDM-PON in which at least a first channel is working, and then an OLT that is providing a service to an ONU through the first channel requests the ONU to tune to the second channel. In response to receiving the request, the ONU determines whether a downstream wavelength of the second channel has been recorded thereon. According to the determination result, the ONU sends to the OLT an ACK message that indicates that the ONU is able to perform wavelength tuning and then commences wavelength tuning to the second channel, or the ONU sends to the OLT a NACK message that indicates that the ONU is unable to perform wavelength tuning.