Abstract:
Technologies are generally described for hardware synthesis using thermally aware scheduling and binding. Multiple versions of a hardware design may be generated, each having variations of schedule and binding results. The scheduling and binding may be performed such that thermal profiles of the multiple versions have thermal peaks that are distant between the versions. The increased physical distance between the thermal peaks of the versions can give the versions unique thermal characteristics. A schedule of rotation between the multiple versions of the design may be constructed such that the thermal profile of the integrated circuit balances out during operation. A linear programming framework may be used to analyze the multiple designs and construct a thermally aware rotation scheduling and binding. For example, the K most efficient versions may be selected and then durations for operating each version within a rotation may be determined.
Abstract:
Techniques are generally described for generating an identification number for an integrated circuit (IC). In some examples, methods for generating an identification of an IC may comprise selecting circuit elements of the IC, evaluating measurements of an attribute of the IC for the selected circuit elements, wherein individual measurements are associated with corresponding input vectors previously applied to the IC, solving a plurality of equations formulated based at least in part on the measurements taken of the attribute of the IC for the selected circuit elements to determine scaling factors for the selected circuit elements, and transforming the determined scaling factors for the selected circuit elements to generate an identification number of the IC. Additional variants and embodiments may also be disclosed.
Abstract:
Techniques are generally described for generating an identification number for an integrated circuit (IC). In some examples, methods for generating an identification for an IC may comprise selecting circuit elements of the IC, evaluating measurements of an attribute of the IC for the selected circuit elements, wherein individual measurements are associated with corresponding input vectors previously applied to the IC, solving a plurality of equations formulated based at least in part on the measurements taken of the attribute of the IC for the selected circuit elements to determine scaling factors for the selected circuit elements, and transforming the determined scaling factors for the selected circuit elements to generate an identification number of the IC. Additional variants and embodiments may also be disclosed.
Abstract:
Techniques are generally described for generating an identification number for an integrated circuit (IC). In some examples, methods for generating an identification for an IC may comprise selecting circuit elements of the IC, evaluating measurements of an attribute of the IC for the selected circuit elements, wherein individual measurements are associated with corresponding input vectors previously applied to the IC, solving a plurality of equations formulated based at least in part on the measurements taken of the attribute of the IC for the selected circuit elements to determine scaling factors for the selected circuit elements, and transforming the determined scaling factors for the selected circuit elements to generate an identification number of the IC. Additional variants and embodiments may also be disclosed.
Abstract:
Technologies are generally described for hardware synthesis using thermally aware scheduling and binding. Multiple versions of a hardware design may be generated, each having variations of schedule and binding results. The scheduling and binding may be performed such that thermal profiles of the multiple versions have thermal peaks that are distant between the versions. The increased physical distance between the thermal peaks of the versions can give the versions unique thermal characteristics. A schedule of rotation between the multiple versions of the design may be constructed such that the thermal profile of the integrated circuit balances out during operation. A linear programming framework may be used to analyze the multiple designs and construct a thermally aware rotation scheduling and binding. For example, the K most efficient versions may be selected and then durations for operating each version within a rotation may be determined.