Abstract:
Techniques for user profile-based system level management (SLM) and creation of system level agreements of a wireless device are generally disclosed. In some examples, a predictor may be provided to predict a future task to be performed by a wireless device, including resource requirements, based at least in part on a profile of a user and at least one of a profile of a communication partner the user, an operational recommendation, a performance model or a current state. An optimizer/analyzer may be provided to generate a plurality of instructions to configure the wireless device, based at least in part on the predicted future task and resource requirement, and a quality of service requirement of the wireless device, in anticipation of having to perform the predicted task. In various examples, the predictor and the optimizer/analyzer may form a local or a remotely disposed system level manager.
Abstract:
Examples include autonomously authenticating a financial transaction, on behalf of the user, without interacting with the user, via wireless communication link. In various embodiments, the user's cellular phone may be configured to process a message that provides at least partial service context and autonomously authenticate the financial transaction.
Abstract:
Techniques for user profile-based system level management (SLM) and creation of system level agreements of a wireless device are generally disclosed. In some examples, a predictor may be provided to predict a future task to be performed by a wireless device, including resource requirements, based at least in part on a profile of a user and at least one of a profile of a communication partner the user, an operational recommendation, a performance model or a current state. An optimizer/analyzer may be provided to generate a plurality of instructions to configure the wireless device, based at least in part on the predicted future task and resource requirement, and a quality of service requirement of the wireless device, in anticipation of having to perform the predicted task. In various examples, the predictor and the optimizer/analyzer may form a local or a remotely disposed system level manager.
Abstract:
Techniques for user profile-based system level management (SLM) and creation of system level agreements of a wireless device are generally disclosed. In some examples, a predictor may be provided to predict a future task to be performed by a wireless device, including resource requirements, based at least in part on a profile of a user and at least one of a profile of a communication partner of the user, an operational recommendation, a performance model or a current state. An optimizer/analyzer may be provided to generate a plurality of instructions to configure the wireless device, based at least in part on the predicted future task and resource requirement, and a quality of service requirement of the wireless device, in anticipation of having to perform the predicted task. In various examples, the predictor and the optimizer/analyzer may form a local or a remotely disposed system level manager.
Abstract:
Techniques are generally described for determining locations of a plurality of communication devices in a network. In some examples, methods for creating a location discovery infrastructure (LDI) for estimating locations of one or more of a plurality of communication nodes may comprise one or more of determining a plurality of locations in the terrain to place a corresponding plurality of beacon nodes, determining a plurality of beacon node groups for the placed beacon nodes, and determining a schedule for the placed beacon nodes to be active. Additional variants and embodiments are also disclosed.
Abstract:
Differential uncloneable variability-based cryptography techniques are provided. The differential cryptography includes a hardware based public physically uncloneable function (PPUF) to perform the cryptography. The PPUF includes a first physically uncloneable function (PUF) and a second physically uncloneable function. An arbiter determines the output of the circuit using the outputs of the first and second PUFs. Cryptography can be performed by simulating the PPUF with selected input. The output of the simulation, along with timing information about a set of inputs from where the corresponding input is randomly selected for simulation, is used by the communicating party that has the integrated circuit with the PPUF to search for an input that produces the output. The input can be configured to be the secret key or a part of the secret key.
Abstract:
Technologies are generally described herein for supporting program and data annotation for hardware customization and energy optimization. A code block to be annotated may be examined and a hardware customization may be determined to support a specified quality of service level for executing the code block with reduced energy expenditure Annotations may be determined as associated with the determined hardware customization. An annotation may be provided to indicate using the hardware customization while executing the code block. Examining the code block may include one or more of performing a symbolic analysis, performing an empirical observation of an execution of the code block, performing a statistical analysis, or any combination thereof. A data block to be annotated may also be examined. One or more additional annotations to be associated with the data block may be determined.
Abstract:
Technologies are generally described for an information system configured to manage parking facility resources. The system can create and apply models and profiles regarding customers, parking space usage, access patterns, events, traffic, and other factors related to the parking facility. Parking facility operators may use the models to seek optimized revenues or profits. Increased revenue for parking facility operators may be supported by allocating resources to longer staying and better paying customers. New opportunities such as reselling, auctions, or options may further improve revenue generation for parking facilities. Customers may interface with the information system for availability queries, interactive reservation, and various other functions that may improve convenience, security, privacy, and service quality for the customers as well as for neighboring businesses and venues. Improved efficiency in parking facility resource consumption may reduce street traffic congestion. Parking security may be improved by adaptive lighting and camera operation.
Abstract:
Technologies are generally described herein for supporting program and data annotation for hardware customization and energy optimization. A code block to be annotated may be examined and a hardware customization may be determined to support a specified quality of service level for executing the code block with reduced energy expenditure Annotations may be determined as associated with the determined hardware customization. An annotation may be provided to indicate using the hardware customization while executing the code block. Examining the code block may include one or more of performing a symbolic analysis, performing an empirical observation of an execution of the code block, performing a statistical analysis, or any combination thereof. A data block to be annotated may also be examined. One or more additional annotations to be associated with the data block may be determined.
Abstract:
A technique of reducing leakage energy associated with a post-silicon target circuit is generally described herein. One example method includes purposefully aging a plurality of gates in the target circuit based on a targeted metric including a timing constraint associated with the target circuit.