摘要:
A process for controlling a continuous fluidised bed reactor (co-)polymerisation process which comprises (1) withdrawing from the reactor a hot recycle stream containing a principal monomer and at least one other unreacted reactant, (2) cooling part or all of the recycle stream withdrawn from the reactor, and (3) recycling part or all of the cooled recycle stream containing the principal monomer and the unreacted reactant(s) through the polymerisation zone in the reactor in the presence of a polymerisation catalyst under reactive conditions, wherein the controlling process consists in maintaining at least one of the reactant gradients (Gri) within a range of values outside which sheeting or unstable operations would otherwise occur.
摘要:
The present invention relates to a process and apparatus for the gas-phase polymerization of olefins in a fluidized-bed reactor maintained at a temperature T1. A gaseous reaction mixture comprising the olefins to be polymerized passes through the reactor and is recycled to the reactor by means of a recycling line comprising successively a first heat transfer means, a compressor and a second heat transfer means. The present invention consists in introducing a readily volatile liquid hydrocarbon into the inlet of the first heat transfer means or into the recycling line, upstream and in the vicinity of the first heat transfer means. The first heat transfer means cools the gaseous reaction mixture to a temperature T2, below T1, while volatilizing the readily volatile hydrocarbon and without condensing a constituent of the gaseous reaction mixture. The second heat transfer means cools the gaseous reaction mixture to a temperature T3, below T2, for maintaining the fluidized-bed at the desired temperature T1.
摘要:
A fluidized bed polymerization reactor which is a generally cylindrical vessel having a longitudinal axis and a fluidization grid located in the vessel generally perpendicular to the longitudinal axis of the vessel and defining a fluidized bed region above the fluidization grid. The reactor has an inlet for continuously introducing a gaseous stream of polymerizable monomers into the vessel below the fluidization grid at a gas velocity sufficient to maintain particles in the fluidized bed region in a suspended and fluidized condition; an outlet for removing polymer product from the fluidized bed region and an outlet for continuously removing an outlet stream of gaseous unreacted polymerizable monomer from the fluidized bed region. A cooling device cools at least a part of the outlet stream to a temperature at which liquid condenses out of the outlet stream, and a separating device separates at least a part of the cooled outlet stream into condensed liquid and a cooled gaseous stream. The separated cooled gaseous stream is returned to the inlet and an injection device injects at least a part of the condensed liquid into the fluidized bed region at a point where the gaseous stream of polymerizable monomers passing through the vessel has substantially reached the operating temperature of the polymerization reactor. The injection device includes at least one gas induced atomizing nozzle for injecting an atomized stream of the condensed liquid into the fluidized bed region in a direction generally perpendicular to the longitudinal axis of the vessel.
摘要:
The present invention relates to a process for continuous gas-phase polymerization of olefin(s) in a fluidized and/or mechanically stirred bed reactor, comprising a stage of drawing off the polymer out of the reactor, wherein a portion of the bed is transferred into a lock hopper and is then isolated from the reactor in the lock hopper for a period of 5 to 120 seconds so that a substantial amount of the olefin(s) in the said portion polymerizes, before the polymer thus isolated in the said portion is discharged out of the lock hopper. The process advantageously reduces the amount of the gas drawn off with the polymer to be recycled into the reactor and improves the degassing of the polymer by the heat of the polymerization reaction during the isolation period in the lock hopper (FIG. 1).
摘要:
A process and an apparatus introduce fine particles of a solid into a reactor with the help of a feed enclosure connected to the reactor through an injection pipe. The process comprises (a) introducing the solid into the feed enclosure wherein most of the solid particles settle at rest and then (b) introducing a gas into the feed enclosure so that the solid particles are suspended by the gas to form a solid particle suspension entrained in a dilute-phase conveying system by the gas into the reactor through the injection pipe. The invention is particularly useful for introducing particles of a solid catalyst into a gas-phase polymerization reactor.
摘要:
The present invention relates to an apparatus for gas phase polymerisation of olefins(s), essentially comprising a fluidized bed reactor and at least one conduit for drawing off polymer provided with an isolation valve and connecting the vertical side wall of the reactor to a lock hopper, the said conduit leaving the vertical side wall of the reactor while being directed downwards so that each part of the said conduit forms with a horizontal plane an angle A ranging from 35.degree. to 90.degree.. It also relates to a process for continuous gas-phase polymerisation of olefin(s) in a fluidized-bed reactor, comprising drawing off the polymer from the vertical side wall of the reactor into a lock hopper via a draw-off conduit so that all flow of the polymer in the draw-off conduit is produced according to a downward direction forming with a horizontal plane an inclination with an angle A at least equal to the angle of repose .beta. of the polymer and not exceeding 90.degree.. The present invention improves the degree of filling of the lock hopper and reduces the amount of gas drawn off with the polymer. (FIG. 1).
摘要:
The invention relates to continuous gas fluidized bed polymerization of olefins, especially ethylene, propylene, or mixtures of these with other alpha olefins, wherein the monomer-containing recycle gas employed to fluidize the bed is cooled to condense out at least some liquid hydrocarbon. The condensed liquid, which can be a monomer or an inert liquid, is separated from the recycle gas and is fed directly to the bed to produce cooling by latent heat of evaporation. The liquid feeding to the bed can be through gas-induced atomizer nozzles (FIG. 2), or through liquid-only nozzles. The process provides substantially improved productivity of gas fluidized bed polymerization of olefins.
摘要:
The invention relates to continuous gas fluidised bed polymerisation of olefins, especially ethylene, propylene, or mixtures of these with other alpha olefins, wherein the monomer-containing recycle gas employed to fluidise the bed is cooled to condense out at least some liquid hydrocarbon. The condensed liquid, which can be a monomer or an inert liquid, is separated from the recycle gas and is fed directly to the bed to produce cooling by latent heat of evaporation. The liquid feeding to the bed can be through gas-induced atomiser nozzles (FIG. 2), or through liquid-only nozzles. The process provides substantially improved productivity of gas fluidised bed polymerisation of olefins.
摘要:
A continuous gas fluidized bed process for the polymerization of an olefin monomer, especially ethylene, propylene, or mixtures of these with other alpha-olefins, wherein monomer-containing recycle gas employed to fluidize the bed is cooled to condense out at least some liquid hydrocarbon. The condensed liquid, which can be a monomer or an inert liquid, is separated from the recycle gas and fed directly to the fluidized bed, through a gas-induced atomizer nozzle, to produce cooling by latent heat of evaporation. The nozzle is provided with a mechanical device within the liquid inlet of the atomizing chamber, that preatomizes the liquid so that the nozzle requires reduced amounts of gas compared with conventional gas-induced atomizer nozzles.
摘要:
The invention relates to continuous gas fluidised bed polymerisation of olefins, especially ethylene, propylene, or mixtures of these with other alpha olefins, wherein the monomer-containing recycle gas employed to fluidise the bed is cooled to condense out at least some liquid hydrocarbon. The condensed liquid, which can be a monomer or an inert liquid, is separated from the recycle gas and is fed directly to the bed to produce cooling by latent heat of evaporation. The liquid feeding to the bed can be through gas-induced atomiser nozzles (FIG. 2), or through liquid-only nozzles. The process provides substantially improved productivity of gas fluidised bed polymerisation of olefins.