摘要:
To control the positioning of a spacer more accurately in a liquid crystal display device to prevent display defects due to incorrect positioning in a display region. To provide a liquid crystal display device with higher image quality and reliability, and to provide a method for manufacturing the liquid crystal display device with high yield. In a liquid crystal display device, a region onto which a spherical spacer is discharged is subjected to liquid-repellent treatment in order to reduce the wettability with respect to a liquid in which the spherical spacer is dispersed. The liquid (the droplet) does not spread over the liquid-repellent region and is dried while moving the spherical spacer toward the center of the liquid. Thus, incorrect positioning shortly after discharging, which has been caused by the loss of control in the liquid, can be corrected by moving the spherical spacer while drying the liquid.
摘要:
To control the positioning of a spacer more accurately in a liquid crystal display device to prevent display defects due to incorrect positioning in a display region. To provide a liquid crystal display device with higher image quality and reliability, and to provide a method for manufacturing the liquid crystal display device with high yield. In a liquid crystal display device, a region onto which a spherical spacer is discharged is subjected to liquid-repellent treatment in order to reduce the wettability with respect to a liquid in which the spherical spacer is dispersed. The liquid (the droplet) does not spread over the liquid-repellent region and is dried while moving the spherical spacer toward the center of the liquid. Thus, incorrect positioning shortly after discharging, which has been caused by the loss of control in the liquid, can be corrected by moving the spherical spacer while drying the liquid.
摘要:
A method of manufacturing a semiconductor device includes steps of forming a gate electrode over a light-transmitting substrate, forming a gate insulating layer containing an inorganic material over the gate electrode and the substrate, forming an organic layer containing a photopolymerizable reactive group over the gate insulating layer, polymerizing selectively the organic layer by irradiating the organic layer with light from back side of the substrate, using the gate electrode as a mask, forming an organic polymer layer by removing a residue of the organic layer, being other than polymerized, forming an organosilane film including a hydrolytic group over the gate insulating layer in a region other than a region in which the organic polymer layer is formed, forming source and drain electrodes by applying a composition containing a conductive material over the organic polymer layer, and forming a semiconductor layer over the gate electrode, the source and drain electrodes.
摘要:
To provide a display device with higher image quality and reliability or a large-sized display device with a large screen at low cost with high productivity. A function layer (such as a coloring layer or a pixel electrode layer) used in the display device is formed by discharging a liquid function-layer-forming material to an opening formed with a layer including a first organic compound which has a C—N bond or a C—O bond in the main chain as a base and a layer including a second organic compound as a partition. The fluorine density exhibiting liquid repellency to the liquid function-layer-forming material, which is attached to a surface of the layers including organic compounds, is controlled, whereby a liquid repellent region and a lyophilic region can be selectively formed.
摘要:
A method of manufacturing a semiconductor device includes steps of forming a gate electrode over a light-transmitting substrate, forming a gate insulating layer containing an inorganic material over the gate electrode and the substrate, forming an organic layer containing a photopolymerizable reactive group over the gate insulating layer, polymerizing selectively the organic layer by irradiating the organic layer with light from back side of the substrate, using the gate electrode as a mask, forming an organic polymer layer by removing a residue of the organic layer, being other than polymerized, forming an organosilane film including a hydrolytic group over the gate insulating layer in a region other than a region in which the organic polymer layer is formed, forming source and drain electrodes by applying a composition containing a conductive material over the organic polymer layer, and forming a semiconductor layer over the gate electrode, the source and drain electrodes.
摘要:
A method of manufacturing a semiconductor device includes steps of forming a gate electrode over a light-transmitting substrate, forming a gate insulating layer containing an inorganic material over the gate electrode and the substrate, forming an organic layer containing a photopolymerizable reactive group over the gate insulating layer, polymerizing selectively the organic layer by irradiating the organic layer with light from back side of the substrate, using the gate electrode as a mask, forming an organic polymer layer by removing a residue of the organic layer, being other than polymerized, forming an organosilane film including a hydrolytic group over the gate insulating layer in a region other than a region in which the organic polymer layer is formed, forming source and drain electrodes by applying a composition containing a conductive material over the organic polymer layer, and forming a semiconductor layer over the gate electrode, the source and drain electrodes.
摘要:
To provide a display device with higher image quality and reliability or a large-sized display device with a large screen at low cost with high productivity. A function layer (such as a coloring layer or a pixel electrode layer) used in the display device is formed by discharging a liquid function-layer-forming material to an opening formed with a layer including a first organic compound which has a C—N bond or a C—O bond in the main chain as a base and a layer including a second organic compound as a partition. The fluorine density exhibiting liquid repellency to the liquid function-layer-forming material, which is attached to a surface of the layers including organic compounds, is controlled, whereby a liquid repellent region and a lyophilic region can be selectively formed.
摘要:
To provide a display device with higher image quality and reliability or a large-sized display device with a large screen at low cost with high productivity. A function layer (such as a coloring layer or a pixel electrode layer) used in the display device is formed by discharging a liquid function-layer-forming material to an opening formed with a layer including a first organic compound which has a C—N bond or a C—O bond in the main chain as a base and a layer including a second organic compound as a partition. The fluorine density exhibiting liquid repellency to the liquid function-layer-forming material, which is attached to a surface of the layers including organic compounds, is controlled, whereby a liquid repellent region and a lyophilic region can be selectively formed.
摘要:
Oxidation treatment is performed to the surface of a substrate provided with a photocatalytic conductive film and an insulating film; treatment with a silane coupling agent is performed, so that a silane coupling agent film is formed and the surface of the substrate is modified to be liquid-repellent; and the surface of the substrate is irradiated with light of a wavelength (less than to equal to 390 nm) which has energy of greater than or equal to a band gap of a material for forming the photocatalytic conductive film, so that only the silane coupling agent film over the surface of the photocatalytic conductive film is decomposed and the surface of the photocatalytic conductive film can be modified to be lyophilic.
摘要:
Oxidation treatment is performed to the surface of a substrate provided with a photocatalytic conductive film and an insulating film; treatment with a silane coupling agent is performed, so that a silane coupling agent film is formed and the surface of the substrate is modified to be liquid-repellent; and the surface of the substrate is irradiated with light of a wavelength (less than to equal to 390 nm) which has energy of greater than or equal to a band gap of a material for forming the photocatalytic conductive film, so that only the silane coupling agent film over the surface of the photocatalytic conductive film is decomposed and the surface of the photocatalytic conductive film can be modified to be lyophilic.