Abstract:
An eyeglass support is adapted for pinch-holding the eyeglass (5) between three first contact portions (41-43) and three second contact portions (61-63). The first contact portions form a height reference for positioning the eyeglass whereas the second contact portions ensure application of the eyeglass against the first contact portions while conforming to any possible shape for the eyeglass. The support suits for being incorporated in a reflection measurement apparatus. In particular, it is useful for measuring reflection of eyeglasses provided with antireflecting coatings or for rating a protection against UV hazards which is provided by an eyeglass to a wearer of the eyeglass.
Abstract:
A method implemented by computer means for determining at least one optical parameter of a lens of eyewear adapted for a person, the method comprising: —an image reception step, during which at least a first image and a second image are received, the first image comprising a front view of the face of the person with at least one part of an eye of the person being directly visible, and the second image comprising a front view of the face of the person with said part of the eye of the person being visible through at least part of the lens, and —an optical parameter determination step, during which at least one optical parameter of the lens is determined based on a comparison between said part on the first and the second image.
Abstract:
A method for determining a parameter of an optical equipment including an optical equipment positioning step, during which an optical equipment comprising a pair of optical lenses mounted on a spectacle frame is positioned in a first position, a portable electronic device positioning step, during which a portable electronic device comprising an image acquisition module is positioned in a second position determined and/or known relatively to the first position so as to acquire an image of a distant element seen through at least part of the optical lenses of the optical equipment in the first position, a parameter determining step, during which at least one optical parameter of the optical equipment is determined based on the image of a distant element seen through at least part of the optical lenses of the optical equipment in the first position.
Abstract:
A method for determining a parameter of an optical equipment, including: an optical equipment positioning, during which an optical equipment including a pair of optical lenses mounted on a spectacle frame is positioned in a first position; a portable electronic device positioning, during which a portable electronic device including an image acquisition module is positioned in a second position determined and/or known relatively to the first position to acquire an image of a distant element seen through at least part of the optical lenses of the optical equipment in the first position; a parameter determining, during which at least one optical parameter of the optical equipment is determined based on the image of a distant element seen through at least part of the optical lenses of the optical equipment in the first position.
Abstract:
A method for monitoring an optical lens manufacturing process at a first lens manufacturing side, the method including: a manufacturing data collecting, during which sets of manufacturing data indicative of at least a manufacturing process parameter and/or a manufacturing device parameters and/or an operator parameter and/or an environment parameter at the first lens manufacturing side are collected; a manufacturing information generating, during which at least one manufacturing information indicative of at least a manufacturing process parameter and/or a manufacturing device parameters and/or an operator parameter and/or an environment parameter at a second lens manufacturing side is generated based on the collected manufacturing data.
Abstract:
A method for controlling a manufacturing device used in an optical lens manufacturing process. The method including providing optical lens data, the optical lens data representing the nominal and effective values of at least one optical lens parameter of an optical lens manufactured according to a manufacturing process using a manufacturing device, providing manufacturing data identifying at least the manufacturing device used to manufacture the optical lens, determining the difference between the nominal and effective values of the at least one optical lens parameter of the optical lens, determining a recommended value of a manufacturing parameter of the manufacturing device identified by the manufacturing data, the recommended value of the manufacturing parameter being determined based on the difference between the nominal and effective values of the at least one optical lens parameter.