Abstract:
Disclosed are eyeglasses adapted to a wearer, including two half-frames interconnected by a bridge, each half-frame including at least a branch and an ophthalmic lens. The bridge of the eyeglasses is made of a separated element attached to each of the half-frames, the bridge having at least one geometrical feature determined by taking into account a morphologico-geometric parameter of the wearer. Also disclosed is a kit and a method for manufacturing the eyeglasses and a method for ordering the eyeglasses.
Abstract:
A method for controlling a manufacturing device used in an optical lens manufacturing process. The method including providing optical lens data, the optical lens data representing the nominal and effective values of at least one optical lens parameter of an optical lens manufactured according to a manufacturing process using a manufacturing device, providing manufacturing data identifying at least the manufacturing device used to manufacture the optical lens, determining the difference between the nominal and effective values of the at least one optical lens parameter of the optical lens, determining a recommended value of a manufacturing parameter of the manufacturing device identified by the manufacturing data, the recommended value of the manufacturing parameter being determined based on the difference between the nominal and effective values of the at least one optical lens parameter.
Abstract:
A process for manufacturing an ophthalmic lens having at least one optical function, includes the following steps: additively manufacturing (100) an intermediate optical element by depositing a plurality of preset volume elements of at least one material having a preset refractive index, the intermediate optical element including a target ophthalmic lens and a thickness allowance consisting of a portion of the plurality of volume elements; and subtractively manufacturing (300), by machining, the target ophthalmic lens from the intermediate optical element, the machining being carried out in a preset sequence, of at least one step, the preset sequence making it possible to subtract the thickness allowance, the additive manufacturing step (100) including a step of determining a manufacturing setpoint for the intermediate optical element in which the thickness allowance is determined depending on the preset sequence defined in the subtractive manufacturing step (300).
Abstract:
A method for manufacturing an ophthalmic lens (40) having at least one optical function, includes the step of additively manufacturing (118) a complementary optical element (12) by depositing a plurality of predetermined volume elements (24) of a material having a predetermined refraction index on a predetermined manufacturing substrate (10), the complementary optical element being configured such as to be assembled with an initial optical system (30), the manufacturing step including the step of determining a manufacturing setting (116) from properties relating to the deformation of the complementary optical element, which deformation is caused by transferring the latter onto the initial optical system, and the step of determining a setting including the step of determining the deformation properties (113) of the complementary optical element from geometric properties of the manufacturing substrate and the initial optical system and from properties of the optical function to be provided to the ophthalmic lens.
Abstract:
Disclosed is a method for detecting a probable error in a set of data relative to a wearer and/or to a frame chosen by the wearer, at least one of these data being used for ordering an ophthalmic lens to be fitted into the frame for the wearer, the set of data including at least a value of a first parameter and a value of a second parameter different from the first parameter, the first and second parameters being relative to the wearer and/or a frame chosen by the wearer, the method including: a) determining a level of consistency of the values of the first and second parameter with each other, based on a predetermined statistical consistency rule linking the first and second parameters; and b) emitting, based on this level of consistency, an alert signal in order to report a probable error.
Abstract:
Method for optimizing an optical lens equipment for a wearer Method for optimizing an optical lens equipment for a wearer, the method comprising:—an eye tracking device providing step, during which a spectacle frame mounted eye tracking device is provided to the wearer, —a wearer parameter monitoring step, during which at least one parameter relating to the eyes of the wearer is monitored using the eye tracking device and—an optimization step during which the optical lens equipment is optimized based at least partly on the base of the monitoring of the at least one parameter during the wearer parameter monitoring step.
Abstract:
A process for manufacturing an ophthalmic lens (10) having at least one optical function, includes: a step (100) of additively manufacturing the ophthalmic lens (10) by depositing a plurality of preset volume elements of at least one material having a preset refractive index in order to form a target geometric envelope; a step of determining an actual geometric envelope at least once during the implementation of the additive manufacturing step (100); and a step of triggering a corrective action if there is in a zone a discrepancy larger than a preset threshold between the target geometric envelope and the actual geometric envelope.
Abstract:
Method for determining the values of a set of n optical parameters (P1, P2, . . . , Pn) of an ophthalmic lens, n being an integer greater than or equal to 1, the method comprising: an nominal ophthalmic lens data providing step, an ophthalmic lens providing step, an optical surface measuring step, a surface errors determining step during which a set of m surface error parameters (α1, α2, . . . , αm) is determined, m being an integer greater than or equal to 1, an optical parameter determining step during which each optical parameter of the set of optical parameters is determined by: P i = P i , 0 + [ ∑ j = 1 m ( ∂ P i ∂ α j ) 0 × Δα j ] + A i with Pi the value of the ith optical parameter of the manufactured optical lens, Pi,0 the value of the ith optical parameter of the nominal optical lens, ( ∂ P i ∂ α j ) 0 the value of the derivative of Pi with respect to the jth surface error parameter αj on the nominal surface and Δαj the value of the jth surface error parameter, and Ai a combination of terms of order greater or equal to 2 for each Pi.
Abstract:
Method for optimizing an optical lens equipment for a wearer Method for optimizing an optical lens equipment for a wearer, the method comprising:—an eye tracking device providing step, during which a spectacle frame mounted eye tracking device is provided to the wearer, —a wearer parameter monitoring step, during which at least one parameter relating to the eyes of the wearer is monitored using the eye tracking device and—an optimization step during which the optical lens equipment is optimized based at least partly on the base of the monitoring of the at least one parameter during the wearer parameter monitoring step.
Abstract:
Ophthalmic lens comprising: a primary zone on a first face; a secondary zone on the first face between said primary zone and the peripheral edge of the lens; first and second regions forming a partition of the secondary zone, which are contiguous and alternate with a pitch. A spectacle eyeglass obtained from said lens produces a first ophthalmic correction in the primary zone and in the first regions, and a second ophthalmic correction in the second regions different from said first ophthalmic correction. An active system of vision comprises an occultation device comprising: a selection device for selecting the wearer's viewing state; an optical occultation system to occult alternatively a first group and a second group according to the wearer's viewing state selected by the selection device, the first group comprising at least the primary zone and the first regions, and the second group comprising at least the second regions.