Abstract:
A corona ignition system for maintaining a drive frequency approximately equal to the resonant frequency of a corona igniter is provided. The system includes a current sensor, at least two cascaded timers which are electrically independent of a controller, and at least two switches. During operation, the current sensor measures the current at an input of the corona igniter. A conditioned current signal including information related to the zero crossings of the current ultimately activates a pair of the timers which in turn control and drive one of the switches. The conditioned current signal is not processed by the controller before driving the switch.
Abstract:
A corona ignition system including a corona igniter, an energy supply, and a frequency detector is provided. The energy supply provides energy to the corona igniter during corona events which are spaced from one another by idle periods, during which no energy is provided to the corona igniter. During the idle periods, the frequency detector obtains the resonant frequency of the corona igniter from at least one of an output voltage and an output current of the energy stored in the corona igniter. The resonant frequency measured during this idle period is dependent only on the corona igniter, and not any other components of the system, and thus is very accurate. The drive frequency of future corona events can then be set based on this accurately measured resonant frequency to achieve a robust corona discharge.
Abstract:
A corona ignition system including a corona igniter, switches, and a programmable controller capable of rapidly adjusting to changes in resonant frequency is provided. Energy at a drive frequency and an output current is provided to the corona igniter. Switches provide energy to the corona igniter at the drive frequency and are activated at different times. The controller obtains the output current provided to the corona igniter, typically once every half cycle, and activates the first switch a predetermined amount of time after a first zero crossing of the output current, wherein the first zero crossing is a zero crossing of the most recent full cycle of the output current. The second switch is activated a predetermined amount of time after a second zero crossing occurring after the first zero crossing. The delay of the system is accounted for by the controller, rather than other components.
Abstract:
The invention provides a system and method for controlling corona discharge. A driver circuit provides energy to the corona igniter and detects any arc formation. Optionally, in response to each arc formation, the energy provided to the corona igniter is shut off for a short time to dissipate the arc. Once the arc dissipates, the energy is applied again to restore the corona discharge. The driver circuit obtains information relating to the corona discharge, such as timing and number of arc formations. A control unit adjusts the energy provided to the corona igniter, shut-off time, or the duration of the corona event based on the information. The adjusted energy levels and duration are applied during subsequent corona events. For example, the voltage level could be reduced or the shutoff time could be increased to limit arc formations and increase the size of the corona discharge during the subsequent corona events.
Abstract:
A system and method for detecting resonant frequency of a corona igniter concurrent with operation of the corona igniter is provided. The method includes providing a plurality of pulses of energy to the corona igniter, each having a pulse duration and spaced from one another by a deadtime duration during which no energy is provided to the corona igniter. Each pulse duration is ceased before current flowing in the corona igniter crosses zero, and each zero crossing of the current occurs during one of the deadtime durations. The next pulse of energy is provided to the corona igniter in response to the zero crossing of the current. A resonant frequency value is then obtained based on a sum of the pulse and deadtime durations of two consecutive cycles, or the time between zero crossings. The resonant frequency values become more accurate over time, and the drive frequency is adjusted accordingly.