Abstract:
A wireless power transmission system that transmits alternating-current power includes a power-transmitting device including first and second electrodes spaced apart and having a total width of λ/2π or less, i.e., a near field range, and a first inductor between the first and second electrodes and a AC power-generating section, and a power-receiving device including third and fourth electrodes spaced apart and having a total width of λ/2π or less, and a second inductor between the third and fourth electrodes and a load. A coupler including the first and second electrodes and the first inductor forms one resonant circuit and a coupler including the third and fourth electrodes and the second inductor forms another resonant circuit. Resonance frequencies of the couplers are substantially equal. The first and second electrodes and the third and fourth electrodes are spaced apart by λ/2π or less.
Abstract:
[OBJECT] There is provided a wireless power transmission system capable of transmitting power efficiently even when there is an obstacle or the like.[ORGANIZATION] A power transmission device has a first and a second electrode (111, 112), a first and a second connection line (115, 116), and a first inductor (113, 114). A power reception device has a third and a fourth electrode (121, 122), a third and a fourth connection line (125, 126), and a second inductor (123, 124). At least one of the first to the fourth electrode is housed in a conductive casing (310, 320) having an opening corresponding to an opposing electrode, and a resonance frequency of a power transmission coupler constituted of the first and the second electrode and the first inductor (113, 144) and a resonance frequency of a power reception coupler constituted of the third and the fourth electrode and the second inductor (123, 124) are set to be substantially equal.
Abstract:
[OBJECT] There is provided a wireless power transmission system capable of transmitting power efficiently even when it is rotated.[ORGANIZATION] A power transmission device has a first and a second electrode (a center electrode 311 and an annular electrode 312) each having a rotationally symmetrical shape with respect to a common center axis, a first and a second connection line (connection lines 315, 316), and a first inductor to (inductor 313, 314). A power reception device has a third and a fourth electrode (center electrode 321 and annular electrode 322) each having a rotationally symmetrical shape with respect to a common center axis, a third and a fourth connection line (connection lines 325, 326), and a second inductor. The electrodes of the power transmission device and the power reception device are disposed to oppose each other across a distance of λ/2π or less as a near field, and a resonance frequency of a coupler constituted of the first and the second electrode and the first inductor and a resonance frequency of a coupler constituted of the third and the fourth electrode and the second inductor (inductor 323, 324) are set to be substantially equal.