Abstract:
Systems and methods for predicting a surge event in a compressor of a turbomachine are provided. According to one embodiment of the disclosure, a system may include one or more computer processors associated with the turbomachine. The one or more computer processors may be operable to receive a plurality of performance parameters of the compressor and analyze the plurality of performance parameters to determine corrected performance values of the performance parameters. Based at least partially on the corrected performance values, a compressor efficiency may be determined. The processor may be further operable to standardize the compressor efficiency for a standard mode of operation, ascertain historical performance data associated with the standard mode of operation, and analyze the compressor efficiency based at least partially on the historical performance data. Based on the analysis of the compressor efficiency, a surge event may be selectively predicted.
Abstract:
An apparatus and method detect damage of a component of a system. The damage detection apparatus includes a first grid of sensors arranged in a first orientation on a surface of the component and configured to generate a first set of signals. The apparatus also includes a second grid of sensors, independent from the first grid of sensors, arranged in a second orientation on an insulating layer on the surface of the component and configured to generate a second set of signals, the second orientation overlapping with the first orientation. A processor detects the damage based on a change in at least one signal of the first set of signals or the second set of signals.
Abstract:
The present application provides a combined cycle system. The combined cycle system may include a number of gas turbine engines, a number of heat recovery steam generators with a selective catalyst reduction and/or oxidation catalyst system, and a catalyst heating system. The catalyst heating system directs an extraction from a first gas turbine engine of the number of gas turbine engines to the selective catalyst reduction and/or oxidation catalyst system of a second heat recovery steam generator of the number of heat recovery steam generators.
Abstract:
An apparatus and method detect damage of a component of a system. The damage detection apparatus includes a first grid of sensors arranged in a first orientation on a surface of the component and configured to generate a first set of signals. The apparatus also includes a second grid of sensors, independent from the first grid of sensors, arranged in a second orientation on an insulating layer on the surface of the component and configured to generate a second set of signals, the second orientation overlapping with the first orientation. A processor detects the damage based on a change in at least one signal of the first set of signals or the second set of signals.
Abstract:
The present application provides a combined cycle system. The combined cycle system may include a number of gas turbine engines, a number of heat recovery steam generators with a selective catalyst reduction and/or oxidation catalyst system, and a catalyst heating system. The catalyst heating system directs an extraction from a first gas turbine engine of the number of gas turbine engines to the selective catalyst reduction and/or oxidation catalyst system of a second heat recovery steam generator of the number of heat recovery steam generators.
Abstract:
Systems and methods for predicting a surge event in a compressor of a turbomachine are provided. According to one embodiment of the disclosure, a system may include one or more computer processors associated with the turbomachine. The one or more computer processors may be operable to receive a plurality of performance parameters of the compressor and analyze the plurality of performance parameters to determine corrected performance values of the performance parameters. Based at least partially on the corrected performance values, a compressor efficiency may be determined. The processor may be further operable to standardize the compressor efficiency for a standard mode of operation, ascertain historical performance data associated with the standard mode of operation, and analyze the compressor efficiency based at least partially on the historical performance data. Based on the analysis of the compressor efficiency, a surge event may be selectively predicted.
Abstract:
Systems and methods for determining risk to operating a turbomachine are provided. According to one embodiment of the disclosure, a method may include receiving historical risk profile data associated with a fleet of turbomachines by at least one processor from a repository. The method can also include receiving ambient conditions of an environment in which a turbomachine is to be operated. Based at least in part on the historical risk profile data and in view of the ambient conditions, at least one risk threshold for at least one known operating profile can be developed. The method may continue with determining that the at least one risk threshold for the at least one known operating profile is reached. Based at least in part on a determination that the at least one risk threshold is reached, a mitigating action associated with the turbomachine can be taken.
Abstract:
A system may include at least one computer device configured to attain a two-dimensional used profile of a leading edge at a specified radial position on a turbomachine airfoil after use. The system aligns opposing substantially straight alignment portions of the two-dimensional used profile with opposing substantially straight alignment portions of a previously attained, two-dimensional, baseline profile of the turbomachine airfoil. The alignment portions of each profile are in substantially identical radial locations of the turbomachine airfoil. Comparing the used profile to the baseline profile determines whether the leading edge at the specified radial position of the used turbomachine airfoil has erosion. The system may also include a laser profiler for measuring the turbomachine airfoil.
Abstract:
A tip shroud of a bladed rotor can be monitored for integrity using a sensor configured to detect the tip shroud. A signal from the sensor can be monitored and if the magnitude of the signal changes, such as beyond a defined amount, an indication of possible damage can be made. A baseline sensed pattern for a revolution of the tip shroud can be compared to an operation sensed pattern for a subsequent revolution, and the indication of damage can be made if there is more than the defined amount and/or percentage of difference between the patterns.