Abstract:
A wind turbine blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge, each extending between a blade tip and a root. The rotor blade additionally defining a span and a chord. The blade assembly further includes a plurality of micro boundary layer energizers positioned on a surface of the pressure side of the rotor blade. The plurality of micro boundary layer energizers extending one of above or below a neutral plane of the rotor blade. The micro boundary layer energizers are shaped and positioned chordwise to delay separation of a boundary layer at a low angle of attack. A wind turbine including the blade assembly is additionally disclosed.
Abstract:
The present disclosure is directed to a system and method for reducing noise associated with a wind turbine, more particularly fan noise when the wind turbine is operating under a reduced noise operating mode. More specifically, the method includes operating the wind turbine at a predetermined rotor speed that is associated with a predetermined power output. The method also includes receiving a request to operate in a reduced noise operating mode and in response to the request, reducing the predetermined rotor speed so as to provide a reduced power output. In response to reducing the predetermined rotor speed, another step includes reducing a speed of one or more cooling fans of the wind turbine.
Abstract:
A wind turbine blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge, each extending between a blade tip and a root. The rotor blade additionally defining a span and a chord. The blade assembly further includes a plurality of micro boundary layer energizers positioned on a surface of the pressure side of the rotor blade. The plurality of micro boundary layer energizers extending one of above or below a neutral plane of the rotor blade. The micro boundary layer energizers are shaped and positioned chordwise to delay separation of a boundary layer at a low angle of attack. A wind turbine including the blade assembly is additionally disclosed.
Abstract:
In one aspect, a method for controlling a wind turbine based on an identified surface condition of a rotor blade may include monitoring an operating parameter of the wind turbine to obtain parameter data related to the operating parameter as an operating input of the wind turbine changes, analyzing the parameter data to identify a roughness state of the rotor blade and performing a corrective action in response to the identified roughness state.
Abstract:
In one aspect, a method for controlling a wind turbine based on an identified surface condition of a rotor blade may include monitoring an operating parameter of the wind turbine to obtain parameter data related to the operating parameter as an operating input of the wind turbine changes, analyzing the parameter data to identify a roughness state of the rotor blade and performing a corrective action in response to the identified roughness state.
Abstract:
A wind turbine system is presented. The wind turbine system includes a rotor comprising a plurality of blades and a hub, and a turbine controller configured to reduce an abnormal amplitude modulation of the wind turbine by adjusting pitch angles of the plurality of blades during a rotation of the rotor based upon aerodynamic loads acting on the rotor.
Abstract:
A wind turbine system is presented. The wind turbine system includes a rotor comprising a plurality of blades and a hub, and a turbine controller configured to reduce an abnormal amplitude modulation of the wind turbine by adjusting pitch angles of the plurality of blades during a rotation of the rotor based upon aerodynamic loads acting on the rotor.