Abstract:
A method of forming a 14 nm triple gate by adding a MG in the dual gate process and the resulting device are provided. Embodiments include forming an EG region, a MG region and a SG region in a first, second and third portions of a Si substrate, respectively; forming an IL over the EG, MG and SG regions; oxidizing the IL; forming a HK dielectric layer over the IL; performing PDA on the HK dielectric layer; forming a PSA TiN layer over the HK dielectric layer; forming an a-Si cap layer over the PSA TiN layer; forming a photoresist over the a-Si cap layer in the EG and SG regions; removing the a-Si cap layer in the MG region, exposing the PSA TiN layer; stripping the photoresist; and annealing the a-Si cap and PSA TiN layers.
Abstract:
A wide-bottom contact to epitaxial structures in a non-planar semiconductor structure is provided. A starting structure includes a non-planar semiconductor structure, the structure including a semiconductor substrate, fins coupled to the substrate, and epitaxial structures (e.g., diamond-shaped silicon epitaxy) on the fins. Trenches to the epitaxial structures with roughly vertical sidewalls are created from a field oxide and photoresist. Silicide is formed on the epitaxial structures, and bottom contact portions (of metal, e.g., tungsten) are conformally created on the silicide. The vertical sidewalls allow for a wider bottom. Contact bodies are then formed on the bottom contact portions.