Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a capacitor trench through a dielectric layer, and forming a base layer overlying the dielectric layer and within the capacitor trench. A base layer via gap is formed in the base layer, where the base layer via gap is positioned overlying the dielectric layer and the first contact. A base plate and a shield are formed from the base layer, where the base plate is within the capacitor trench. A capacitor insulating layer is formed overlying the base plate, the base layer, and within the base layer via gap, and a via is formed through the base layer via gap. A second contact and a top plate are simultaneously formed, where the second contact is formed in the via and the top plate is formed in the capacitor trench.
Abstract:
A serial capacitor comprised of a bottom electrode, a top electrode that is conductively coupled the bottom electrode, a middle electrode positioned between the bottom and top electrode, a lower dielectric layer positioned between the bottom and middle electrodes, and an upper dielectric layer positioned between the middle and the electrodes. A method includes forming the bottom electrode in a first layer of insulating material, forming the lower dielectric layer and the middle electrode above the bottom electrode, wherein the middle electrode is positioned in a second layer of insulating material, forming the upper dielectric layer above the middle electrode, forming an opening that exposes a portion of the bottom electrode, and forming the top electrode above the upper dielectric layer, wherein a portion of the top electrode extends through the opening and contacts the bottom electrode.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a capacitor trench through a dielectric layer, and forming a base layer overlying the dielectric layer and within the capacitor trench. A base layer via gap is formed in the base layer, where the base layer via gap is positioned overlying the dielectric layer and the first contact. A base plate and a shield are formed from the base layer, where the base plate is within the capacitor trench. A capacitor insulating layer is formed overlying the base plate, the base layer, and within the base layer via gap, and a via is formed through the base layer via gap. A second contact and a top plate are simultaneously formed, where the second contact is formed in the via and the top plate is formed in the capacitor trench.
Abstract:
Integrated circuits with MIM capacitors and methods for producing them with metal and oxide hard masks are provided. Embodiments include disposing a dielectric layer over an ILD, the ILD including a contact therethrough in a first region; forming a capacitor trench in the dielectric layer in a second region; forming a MIM hard mask by: disposing a first metal hard mask in the first region and in the capacitor trench in the second region; disposing an oxide hard mask over the first metal hard mask; and disposing a second metal hard mask over the oxide hard mask; forming a metal line trench through the MIM hard mask in the first region, including over the contact, while masking the second region; and removing portions of the MIM hard mask in the capacitor trench, wherein a remaining portion of the first metal hard mask comprises a bottom plate of an MIM capacitor.
Abstract:
A serial capacitor comprised of a bottom electrode, a top electrode that is conductively coupled the bottom electrode, a middle electrode positioned between the bottom and top electrode, a lower dielectric layer positioned between the bottom and middle electrodes, and an upper dielectric layer positioned between the middle and the electrodes. A method includes forming the bottom electrode in a first layer of insulating material, forming the lower dielectric layer and the middle electrode above the bottom electrode, wherein the middle electrode is positioned in a second layer of insulating material, forming the upper dielectric layer above the middle electrode, forming an opening that exposes a portion of the bottom electrode, and forming the top electrode above the upper dielectric layer, wherein a portion of the top electrode extends through the opening and contacts the bottom electrode.