Abstract:
A method of manufacturing a protection frame used in a miniature microphone is provided. In one embodiment, the method comprises the steps of: (1) preparing a substrate made of an insulating material with a prescribed thickness and a prescribed area; (2) forming a plurality of holes at prescribed intervals on the substrate; (3) forming a first metal shielding layer on the inner surface of each of the plurality of holes formed on the substrate; (4) filling an insulating material in the plurality of holes; (5) forming a plurality of extended portions on the surfaces of both sides of the substrate, each extended portion covering a part of the end face of the insulating material and the whole end face of the first metal shielding layer of a hole; (6) forming a cavity in each insulating material-filled hole, the caliber of each cavity being slightly smaller than the inner caliber of the corresponding extended portion formed in the above mentioned step (5); and (7) cutting the plurality of holes from the substrate to produce a collection of protection frames.
Abstract:
The present invention discloses a MEMS device and an electronics apparatus. The MEMS device comprises: a substrate; a MEMS element placed on the substrate; a cover encapsulating the MEMS element together with the substrate; and a port for the MEMS element to access outside, wherein the port is provided with a filter which has mesh holes and includes electrets to prevent particles from entering into the MEMS element.
Abstract:
A method of manufacturing a protection frame used in a miniature microphone is provided. In one embodiment, the method comprises the steps of: (1) preparing a substrate made of an insulating material with a prescribed thickness and a prescribed area; (2) forming a plurality of holes at prescribed intervals on the substrate; (3) forming a first metal shielding layer on the inner surface of each of the plurality of holes formed on the substrate; (4) filling an insulating material in the plurality of holes; (5) forming a plurality of extended portions on the surfaces of both sides of the substrate, each extended portion covering a part of the end face of the insulating material and the whole end face of the first metal shielding layer of a hole; (6) forming a cavity in each insulating material-filled hole, the caliber of each cavity being slightly smaller than the inner caliber of the corresponding extended portion formed in the above mentioned step (5); and (7) cutting the plurality of holes from the substrate to produce a collection of protection frames.
Abstract:
The present invention discloses a driving current correction method and apparatus for multiple laser devices, and a laser projector, A specific embodiment of the method includes in projection periods of n-th to (n+m−1)-th pixel points: detecting light intensity information of a combined laser after being combined lasers emitted from in laser devices in a laser source by using a light sensor, and respectively acquiring actual light intensities of combined lasers when the n-th to the (n+m−1)-th pixel points are projected according to an electric signal output by the light sensor, a number of the laser devices in the laser source being m; establishing a system of linear equations with in variables according to a driving current of each laser device and the actual light intensities of the combined lasers when the n-th to the (n+m−1)-th pixel points are projected, and solving a corresponding relation between the driving current of the each laser device and an actual light intensity of the laser emitted from the each laser device; from a projection of a (n+m)-th pixel point: correcting the driving current of the each laser device according to a set light intensity of the each laser device and the corresponding relation between the driving current of the each laser device and the actual light intensity of the laser emitted from the each laser device. The implementation has a high consistency of detecting light intensity information that can be simply performed.