Abstract:
A computing device receives, via a communication network, map data including (i) a description of geometries of map features and (ii) a first description of visual characteristics defined separately and independently of the description of the geometries. The computing device applies the visual characteristics to the geometries to render a first digital map. The computing device then receives, via the communication network, a second description of visual characteristics for application to the geometries previously provided to the computing device as part of the map data, and applies the second visual characteristics to the previously received geometries of the plurality of map features to render a second digital map.
Abstract:
First map data is generated in a vector format for displaying a first map image at a client device. The first map image corresponds to a perspective of a camera panned to a certain location at a certain zoom level. The first map data is provided to the client device via a communication network. Modification data is generated at a map server in a vector format, the modification data specifying a difference between the first map data and a second map data, where the second map data is for displaying a second map image corresponding to the same perspective of the camera panned to the same location at the same zoom level. The modification data is provided to the client device via the communication network for generating the second map image using the first map data and the modification data.
Abstract:
A viewing window of a map surface is determined, at a certain zoom level corresponding to the magnification of the map surface. A first set of style parameters for applying to a feature of the map surface, where the feature is described in a vector format using several interconnected vertices, is determined. The first set of style parameters corresponds to a first zoom level of the viewing window, and the first zoom level corresponds to a first magnification. A second set of style parameters for the feature is also determined, where the second set of style parameters corresponds to a second zoom level of the viewing window, and where the second zoom level corresponds to a second magnification. A third set of style parameters for displaying the feature is determined by interpolating between the first set of style parameters and the second set of style parameters.
Abstract:
A request for navigation directions for travelling from a source location to a destination location is received. Using data that was stored in a memory of a computing device prior to the request, first navigation directions for travelling from the source location to the destination location are generated, and a request for navigation directions for travelling from the source location to the destination location is transmitted to an online server. After second navigation directions for travelling from the source to the destination are received, it is determined whether a difference between the first navigation directions and the second navigation directions exceeds a threshold level. When the difference between the first navigation directions and the second directions route does not exceed the threshold level, the second navigation directions are merged into the first navigation directions.
Abstract:
The memory of a user device stores map data for rendering a digital map of a geographic area. The memory also stores searchable geospatial data organized into tiles. Each tile corresponds to a respective portion of the geographic area of a substantially same size. The geospatial data includes, for each of the tiles, descriptions of one or more geographic entities and a location of the one or more geographic entities, within the corresponding portion of the geographic area. The processing hardware of the user device is configured to (i) display the digital map via the user interface, (ii) receive the map data and the searchable geospatial data from the map data server, in the online mode, (iii) receive a geographic query pertaining to the geographic area, and (iv) execute the geographic query using the geospatial data stored in the computer-readable memory.
Abstract:
A graphics or image rendering system, such as a map image rendering system, may receive map data associated with a set of zoom levels, where the map data includes style attribute data corresponding to various features of a map surface at corresponding zoom levels. The system may interpolate at least some of the style parameter values from the received map data to provide style parameter values over a range of zoom levels.
Abstract:
Multiple individually renderable map elements, each representing a respective physical entity in a geographic area, are rendered to generate a digital map of the geographic area. A description of an aggregate map feature that includes several but not all of the multiple map elements is received. The several map elements represent physical entities that form a common administrative unit. A selection of one of the several map elements is received via the user interface. In response to receiving the selection, the several map elements included in the aggregate map feature are automatically selected, and an indication that the aggregate map feature has been selected is provided on the user interface.
Abstract:
A request for navigation directions for travelling from a source location to a destination location is received. Using data that was stored in a memory of a computing device prior to the request, first navigation directions for travelling from the source location to the destination location are generated, and a request for navigation directions for travelling from the source location to the destination location is transmitted to an online server. After second navigation directions for travelling from the source to the destination are received, it is determined whether a difference between the first navigation directions and the second navigation directions exceeds a threshold level. When the difference between the first navigation directions and the second directions route does not exceed the threshold level, the second navigation directions are merged into the first navigation directions.
Abstract:
A map server generates a set of base map tiles having vector descriptors, each indicating a geometry of a respective map element, in accordance with a non-raster format for rendering a first map image. The map server provides the base map tiles to the client device. Upon receiving an indication that a specific map image for the selected geographic region is to be rendered at the client device, the map server generates a set of difference map tiles that indicate changes to be made to the set of base map tiles and sends the difference map tiles to the client device for use, along with the set of base map tiles, in rendering the requested specific map image. The client device renders the new map view defined by the difference map tiles without needing to again pre-process all of the features or elements defined in the base map tiles.
Abstract:
To provide map data for rendering map images corresponding to a selected geographic region at a client device, a map server generates a set of base map tiles having vector descriptors, each of which indicates a geometry of a respective map element, in accordance with a non-raster format for rendering a first map image. The map server, at some point, provides the base map tiles to the client device. Upon receiving an indication that a specific map image for the selected geographic region is to be rendered at the client device, the map server further generates a set of difference map tiles that indicate changes to be made to the set of base map tiles and sends the difference map tiles to the client device for use, along with the set of base map tiles, in rendering the requested specific map image.