Abstract:
An exemplary method for surfacing feature changes occurring over time at a location is provided. The method includes identifying sets of images captured at a location over a period of time. The sets of images depict objects at the location. Visual changes at the location over the period of time are determined for a given physical feature of the objects depicted in images from the sets of images based on at least a comparison of features in corresponding areas of a first and a second 3D geometry of the location associated with the images. The first and second 3D geometries depict physical features of objects at the location at different times. The sets of images may be ranked based on the determined visual changes for each set. A given set of images from the sets of images may be selected for display on a user interface based on the ranking.
Abstract:
Systems and methods of the present disclosure provide techniques for providing user-specified ways of navigating through real-world three-dimensional geographic imagery that spans space and time. An exemplary method includes identifying a plurality of images depicting a geographic location at street level. The images are captured at the geographic location over a span of time. Using a processor, image data is associated with the plurality of images. The image data includes information representing positional data and a time dimension related to the plurality of images. Using the processor, a user's navigational intent to move back and forward through the time dimension is predicted based on a navigational signal. The exemplary method further includes selecting a set of images from the plurality of images based on the image data and the predicted navigational intent. The set of images depict conditions at the geolocation for one or more time periods.
Abstract:
Systems and methods are provided for using imagery depicting a timekeeping device to determine a clock offset for a particular image capture device. The clock offset can be used to correct timestamps associated with one or more images captured by such image capture device. One example method includes analyzing imagery depicting at least in part a timekeeping device to determine a first time displayed by the timekeeping device in the imagery. The method includes determining whether the first time comprises a 12-hour value or a 24-hour value. The method includes, when it is determined that the first time comprises a 12-hour value, determining a corresponding 24-hour value for the 12-hour value based at least in part on information contained within a plurality of images. The method includes determining a clock offset between the 24-hour value and the first timestamp. One example system includes a timestamp correction engine for correcting timestamps.
Abstract:
Images may be automatically annotated with place identifiers based on textual metadata associated with the images. The quality of these place identifiers may be scored based on a number of different factors. For example, these annotations may also include confidence and topicality values indicative of the relationships between the place identifier and the text as well as topics of the text of the textual metadata. Images that also have additional location information that includes GPS coordinates or a location specified by a user, may be used to evaluate the quality of a given place identifier, combination of confidence and topicality values, and the overall annotation system. These valuations may, in turn, be used to score the quality of such automatic annotations of other images that do not have such additional location information.
Abstract:
Images may be automatically annotated with place identifiers based on textual metadata associated with the images. The quality of these place identifiers may be scored based on a number of different factors. For example, these annotations may also include confidence and topicality values indicative of the relationships between the place identifier and the text as well as topics of the text of the textual metadata. Images that also have additional location information that includes GPS coordinates or a location specified by a user, may be used to evaluate the quality of a given place identifier, combination of confidence and topicality values, and the overall annotation system. These valuations may, in turn, be used to score the quality of such automatic annotations of other images that do not have such additional location information.
Abstract:
An exemplary method for surfacing feature changes occurring over time at a location is provided. The method includes identifying sets of images captured at a location over a period of time. The sets of images depict objects at the location. Visual changes at the location over the period of time are determined for a given physical feature of the objects depicted in images from the sets of images based on at least a comparison of features in corresponding areas of a first and a second 3D geometry of the location associated with the images. The first and second 3D geometries depict physical features of objects at the location at different times. The sets of images may be ranked based on the determined visual changes for each set. A given set of images from the sets of images may be selected for display on a user interface based on the ranking.
Abstract:
Systems and methods are provided for using imagery depicting a timekeeping device to determine a clock offset for a particular image capture device. The clock offset can be used to correct timestamps associated with one or more images captured by such image capture device. One example method includes analyzing imagery depicting at least in part a timekeeping device to determine a first time displayed by the timekeeping device in the imagery. The method includes determining whether the first time comprises a 12-hour value or a 24-hour value. The method includes, when it is determined that the first time comprises a 12-hour value, determining a corresponding 24-hour value for the 12-hour value based at least in part on information contained within a plurality of images. The method includes determining a clock offset between the 24-hour value and the first timestamp. One example system includes a timestamp correction engine for correcting timestamps.