Abstract:
This disclosure relates to an antenna system. The antenna system includes a first radiating element configured to emit electromagnetic radiation based on a first input signal. The antenna system also includes a reflecting element configured to reflect at least a portion of the electromagnetic radiation emitted by the first radiating element. The antenna system further includes a ground plane located between the first radiating element and the reflecting elements. Additionally, the antenna system has a feed configured to provide the input signal to the first radiating element. Furthermore, the antenna system includes at least one metallic support structure. The metallic support structure is configured to both (i) provide a separation between the first radiating element and the reflecting element and (ii) radiate electromagnetic energy based on a coupling of the electromagnetic radiation emitted by the first radiating element.
Abstract:
Example methods and systems for using radio frequency (RF) signals with different beam widths for purposes of balloon-to-balloon communication are described. One example method includes determining a vertical angle between a first balloon and a second balloon, if the vertical angle is below a threshold angle, communicating with the second balloon using a narrow beam RF signal from a communication system of the first balloon, and if the vertical angle is not below the threshold angle, communicating with the second balloon using a wide beam RF signal from the communication system of the first balloon.
Abstract:
Example methods and systems for using radio frequency (RF) signals with different beam widths for purposes of balloon-to-balloon communication are described. One example method includes determining a vertical angle between a first balloon and a second balloon, if the vertical angle is below a threshold angle, communicating with the second balloon using a narrow beam RF signal from a communication system of the first balloon, and if the vertical angle is not below the threshold angle, communicating with the second balloon using a wide beam RF signal from the communication system of the first balloon.
Abstract:
A high-altitude balloon is provided that may use at least one conductive coil to facilitate attitude control of the balloon. The balloon may include an envelope, a conductive coil, and a control system. The conductive coil may be operatively coupled to the envelope, and the control system may be configured to perform functions. The functions may include determining a measure of rotation with respect to a predetermined orientation of the balloon. The functions may additionally include causing a current to be applied to the conductive coil in a manner such that torque is applied to the envelope that counteracts the measure of rotation and substantially returns the balloon to the predetermined orientation.
Abstract:
An antenna includes a radiator and a reflector and has a radiation pattern that is based at least in part on a separation distance between the radiator and the reflector. The antenna includes a linkage configured to adjust the separation distance based at least in part on the altitude of the antenna. The resulting radiation pattern can be dynamically adjusted based on altitude of the antenna such that, while the antenna is aloft and the antenna is ground-facing, variations in geographic boundaries and intensity of the radiation received at ground level are at least partially compensated for by the dynamic adjustments to the radiation pattern.
Abstract:
This disclosure relates to an antenna system. The antenna system includes a first and a second set of radiating elements each configured to emit electromagnetic radiation corresponding to an input signal. The electromagnetic energy may be emitted by the first set may have a first polarization. The first set of radiating elements includes a first radiating element having a first height. The first set also includes a second radiating element having a second height. The second radiating element may be coupled to a first phase adjustment component. The electromagnetic energy may be emitted by the first set may have a second polarization that is perpendicular to the first polarization. The second set of radiating elements includes a third radiating element having a third height. The second set also includes a fourth radiating element having a fourth height. The fourth radiating element may be coupled to a second phase adjustment component.
Abstract:
An antenna includes a radiator and a reflector and has a radiation pattern that is based at least in part on a separation distance between the radiator and the reflector. The antenna includes a linkage configured to adjust the separation distance based at least in part on the altitude of the antenna. The resulting radiation pattern can be dynamically adjusted based on altitude of the antenna such that, while the antenna is aloft and the antenna is ground-facing, variations in geographic boundaries and intensity of the radiation received at ground level are at least partially compensated for by the dynamic adjustments to the radiation pattern.
Abstract:
Example methods and systems for adjusting the beam width of radio frequency (RF) signals for purposes of balloon-to-ground communication are described. One example method includes determining, based on respective locations of a plurality of balloons and areas covered by respective ground-facing communication beams of the balloons, a contiguous ground coverage area served by the plurality of balloons, where the communication beam of a balloon defines a corresponding individual coverage area within the ground coverage area, determining a change in position of at least one of the balloons, based on the change in position of the at least one balloon, determining an adjustment to a first of the individual coverage areas in an effort to maintain the contiguous ground coverage area after the change in position of at least one of the balloons, and adjusting a width of the ground-facing communication beam of the balloon corresponding to the first individual coverage area in order to make the determined adjustment to the first individual coverage area.
Abstract:
Methods and apparatus are disclosed for passively steering an antenna disposed on a balloon in a balloon network. An example balloon involves: (a) an antenna and (b) a pressure-sensitive mechanism in mechanical communication with the antenna such that a change in the balloon's altitude causes at least an element of the antenna to rotate upward or downward, a separation distance between two or more radiating elements to increase or decrease, or a separation distance between the two or more radiating elements and a reflector to increase or decrease.
Abstract:
An antenna includes a radiator and a reflector and has a radiation pattern that is based at least in part on a separation distance between the radiator and the reflector. The antenna includes a linkage configured to adjust the separation distance based at least in part on the altitude of the antenna. The resulting radiation pattern can be dynamically adjusted based on altitude of the antenna such that, while the antenna is aloft and the antenna is ground-facing, variations in geographic boundaries and intensity of the radiation received at ground level are at least partially compensated for by the dynamic adjustments to the radiation pattern.