Abstract:
A computing device is associated with a circuit for sharing and distributing backup power. During normal operating conditions, a main bus bar provides power to each computing device in a rack via a main power bus of the corresponding circuit. In the event of an AC power outage, the main power bus is deactivated and a backup power path of the circuit is activated. Backup power is provided to the device from a battery of the circuit via the backup power path. A shared power path is also activated in the circuit such that backup power may be provided from the battery to the main bus bar. By providing backup power to the main bus bar, the other computing devices in the rack that do not have sufficient backup power may receive backup power from the main bus bar until AC power is restored.
Abstract:
A computing device is associated with a circuit for sharing and distributing backup power. During normal operating conditions, a main bus bar provides power to each computing device in a rack via a main power bus of the corresponding circuit. In the event of an AC power outage, the main power bus is deactivated and a backup power path of the circuit is activated. Backup power is provided to the device from a battery of the circuit via the backup power path. A shared power path is also activated in the circuit such that backup power may be provided from the battery to the main bus bar. By providing backup power to the main bus bar, the other computing devices in the rack that do not have sufficient backup power may receive backup power from the main bus bar until AC power is restored.
Abstract:
A computing device is associated with a circuit for sharing and distributing backup power. During normal operating conditions, a main bus bar provides power to each computing device in a rack via a main power bus of the corresponding circuit. In the event of an AC power outage, the main power bus is deactivated and a backup power path of the circuit is activated. Backup power is provided to the device from a battery of the circuit via the backup power path. A shared power path is also activated in the circuit such that backup power may be provided from the battery to the main bus bar. By providing backup power to the main bus bar, the other computing devices in the rack that do not have sufficient backup power may receive backup power from the main bus bar until AC power is restored.
Abstract:
The present invention pertains to calibration in current sensing applications. Power conversion systems such as those used in computer architectures may employ step down converters such as buck converters or other types of converters. The present invention provides calibration processes and devices to account for various parasitic resistances which are found in such systems. A calibration circuit may be coupled to the buck converter or other power conversion to determine a calibrated voltage signal for the output of the power converter. An effective DC resistance may be determined and programmed for use by a control device used. In this way, the parasitic resistances are taken into account to obtain an accurate estimate of the actual current. In turn, this enables power converters and other devices to operate within specification requirements.