Abstract:
Systems and methods for communication between an implantable medical device and an external device. Data blocks are generated and transmitted between the implantable device and the external device. The data blocks include a first flag indicating whether the data block is a first data block in a message and when the data block is a subsequent data block in a multiple data block message. When the first flag indicates that the data block is a first data block in a message, the data block also contains a device ID, a command token, and message content. When the first flag indicates that the data block is a subsequent data block in a multiple data block message, the data block contains additional message content that is appended to message content from a previously received data block.
Abstract:
A controller for implementing a method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where such arbitrary waveforms can also be used for charge balancing purposes.
Abstract:
A method of visualizing a user interaction with a clinician programmer is disclosed. A user engagement with respect to a screen of the clinician programmer is detected via one or more sensors associated with the screen of the clinician programmer. One or more locations on the screen of the clinician programmer corresponding to the user engagement is determined. An external monitor is communicatively coupled to the clinician programmer. The external monitor displays one or more cursors that graphically represent the one or more locations on the screen of the clinician programmer corresponding to the user engagement, respectively.
Abstract:
A method of visualizing a user interaction with a clinician programmer is disclosed. A user engagement with respect to a screen of the clinician programmer is detected via one or more sensors associated with the screen of the clinician programmer. One or more locations on the screen of the clinician programmer corresponding to the user engagement is determined. An external monitor is communicatively coupled to the clinician programmer. The external monitor displays one or more cursors that graphically represent the one or more locations on the screen of the clinician programmer corresponding to the user engagement, respectively.
Abstract:
A method of visualizing a user interaction with a clinician programmer is disclosed. A user engagement with respect to a screen of the clinician programmer is detected via one or more sensors associated with the screen of the clinician programmer. One or more locations on the screen of the clinician programmer corresponding to the user engagement is determined. An external monitor is communicatively coupled to the clinician programmer. The external monitor displays one or more cursors that graphically represent the one or more locations on the screen of the clinician programmer corresponding to the user engagement, respectively.
Abstract:
Systems and methods for communication between an implantable medical device and an external device. Data blocks are generated and transmitted between the implantable device and the external device. The data blocks include a first flag indicating whether the data block is a first data block in a message and when the data block is a subsequent data block in a multiple data block message. When the first flag indicates that the data block is a first data block in a message, the data block also contains a device ID, a command token, and message content. When the first flag indicates that the data block is a subsequent data block in a multiple data block message, the data block contains additional message content that is appended to message content from a previously received data block.
Abstract:
A method, device and/or system for generating arbitrary scalable waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where scaling function(s) can be used to scale arbitrary waveforms for increased flexibility and which can also be used for charge balancing purposes as well.
Abstract:
A method of visualizing a user interaction with a clinician programmer is disclosed. A user engagement with respect to a screen of the clinician programmer is detected via one or more sensors associated with the screen of the clinician programmer. One or more locations on the screen of the clinician programmer corresponding to the user engagement is determined. An external monitor is communicatively coupled to the clinician programmer. The external monitor displays one or more cursors that graphically represent the one or more locations on the screen of the clinician programmer corresponding to the user engagement, respectively.
Abstract:
A method, device and/or system for generating arbitrary scalable waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where scaling function(s) can be used to scale arbitrary waveforms for increased flexibility and which can also be used for charge balancing purposes as well.
Abstract:
In a method for programming an implantable device, an input is received at a user interface on a tablet-style clinician programmer. A first display signal is generated on the clinician programmer that updates content on a first display based on the received user input. The first display has a first size. A second display signal is generated for transmission to a secondary unit having a second display separate from the clinician programmer. The second display has a second size larger than the first size. The generating of the second display signal includes enhancing the content of the second display signal to provide a clear image on the second size display. The second display signal is transmitted from the clinician programmer to the second display.