Abstract:
A graphical in-flight message representation system comprises a sensor configured to measure a characteristic of a flight of an aircraft and a communication device configured to send and receive in-flight messages. An in-flight message is a message communicated during the flight of the aircraft. The system also comprises a display unit configured to display a graphical flight progress indicator and one or more message icons, each of the one or more message icons corresponding to a respective in-flight message. The graphical flight progress indicator is representative of the characteristic of the flight measured by the sensor. Each of the one or more message icons are displayed in location relative to the graphical flight progress indicator based on the measured characteristic of the flight when the respective in-flight message was communicated.
Abstract:
In one embodiment an in-aircraft system that implements a flight planning module is provided. The flight planning module is configured to display on the display unit a pending flight plan and implement a first button associated with a display of the pending flight plan. The first button, if selected, directs the one or more processing units to convert the pending flight plan to a format for sending in a datalink message, and to cause the pending flight plan to be sent to a ground station in a downlink datalink message without human input to a message applications module, the message applications module including instructions to display information corresponding to datalink messages on a display unit and to maintain a message log of datalink messages.
Abstract:
Systems and methods for displaying position sensitive datalink messages on avionics displays are provided. In one embodiment, a flight deck instrument display system for an aircraft comprises: a flight plan display screen that displays a graphical representation of at least a part of an aircraft's planned flight path together with symbology representing a position of the aircraft with respect to the aircraft's planned flight path; wherein the flight plan display screen further displays at least one symbol positioned along the graphical representation of at least a part of the aircraft's planned flight path that indicates a point of applicability for a received uplink datalink message.
Abstract:
A method of displaying aircraft operating and position information with an electronic display unit comprises determining a position of a first aircraft at an airport; determining an optimum speed range of the first aircraft; determining a first aircraft speed of the first aircraft; displaying on a screen of the display unit a map of at least part of the airport; displaying a first aircraft symbol on the map, the first aircraft symbol displayed in a position on the map indicative of position of the first aircraft; and displaying an optimum speed range symbol having a lower bound end and a higher bound end in a position on the map such that the first aircraft symbol is between the lower bound end and the higher bound end when the first aircraft speed is within the optimum speed range.
Abstract:
A graphical in-flight message representation system comprises a sensor configured to measure a characteristic of a flight of an aircraft and a communication device configured to send and receive in-flight messages. An in-flight message is a message communicated during the flight of the aircraft. The system also comprises a display unit configured to display a graphical flight progress indicator and one or more message icons, each of the one or more message icons corresponding to a respective in-flight message. The graphical flight progress indicator is representative of the characteristic of the flight measured by the sensor. Each of the one or more message icons are displayed in location relative to the graphical flight progress indicator based on the measured characteristic of the flight when the respective in-flight message was communicated.
Abstract:
In one embodiment, an aerospace system is provided. The aerospace system comprises at least one display unit configured to display flight data and a memory configured to store one or more flight plan associations. Each flight plan association is an association between a data link message and a respective waypoint in a flight plan. The aerospace system also comprises a processing unit configured to determine when each respective waypoint in the flight plan is reached based on a comparison of current location data to the flight plan. When each respective waypoint is reached, the processing unit is configured to identify any data link messages associated with the respective waypoint based on the flight plan associations and to direct the at least one display unit to display a respective notification for each identified data link message associated with the respective waypoint.
Abstract:
In one embodiment an in-aircraft system that implements a flight planning module is provided. The flight planning module is configured to display on the display unit a pending flight plan and implement a first button associated with a display of the pending flight plan. The first button, if selected, directs the one or more processing units to convert the pending flight plan to a format for sending in a datalink message, and to cause the pending flight plan to be sent to a ground station in a downlink datalink message without human input to a message applications module, the message applications module including instructions to display information corresponding to datalink messages on a display unit and to maintain a message log of datalink messages.
Abstract:
Systems and methods for improving situational awareness on an in-trails procedures display. A radar system transmits a radar signal and receives and stores weather radar reflectivity values into a three-dimensional buffer. A processor determines whether any of the stored weather reflectivity values indicate the presence of a weather hazard and generates one or more weather hazard icons based on the stored weather reflectivity values. An in-trail procedures display device displays the generated weather hazard icons. Wake vortex information for other aircraft is generated and outputted on the in-trail procedures display. Also, the processor receives a request for an altitude change and generates an alert when the aircraft is determined not to be cleared to transition to the requested altitude based on a projected transition, any existing weather hazards, wake vortices of proximate aircraft, and in-trail procedures.
Abstract:
Systems and methods for displaying position sensitive datalink messages on avionics displays are provided. In one embodiment, a flight deck instrument display system for an aircraft comprises: a flight plan display screen that displays a graphical representation of at least a part of an aircraft's planned flight path together with symbology representing a position of the aircraft with respect to the aircraft's planned flight path; wherein the flight plan display screen further displays at least one symbol positioned along the graphical representation of at least a part of the aircraft's planned flight path that indicates a point of applicability for a received uplink datalink message.
Abstract:
A method of displaying aircraft operating and position information with an electronic display unit comprises determining a position of a first aircraft at an airport; determining an optimum speed range of the first aircraft; determining a first aircraft speed of the first aircraft; displaying on a screen of the display unit a map of at least part of the airport; displaying a first aircraft symbol on the map, the first aircraft symbol displayed in a position on the map indicative of position of the first aircraft; and displaying an optimum speed range symbol having a lower bound end and a higher bound end in a position on the map such that the first aircraft symbol is between the lower bound end and the higher bound end when the first aircraft speed is within the optimum speed range.