Abstract:
Turbine nozzles and cooling systems for cooling slip joints therein are provided. The turbine nozzle has an endwall, a vane coupled to the endwall, a slip joint, and a plurality of airfoil quenching holes that cooperate with a plurality of endwall cooling holes. The vane comprises a leading edge and a trailing edge interconnected by a pressure sidewall and a suction sidewall and an end portion. The slip joint is between the end portion and the endwall. The airfoil quenching holes are defined through the pressure sidewall in the end portion. The endwall cooling holes are defined through the endwall along the pressure sidewall and in proximity to the leading edge. The airfoil quenching holes and endwall cooling holes are disposed adjacent the slip joint.
Abstract:
A rotating machine includes a hub portion, wherein the hub portion comprises a forward face and an aft face. The rotating machine further includes a cooling channel formed on either the forward face or the aft face and configured to direct cooling air to a location on the rotating machine, wherein the cooling channel extends from a radially inner location along said face to a radially outer location along said face, and wherein the cooling channel is configured as a recess formed into an outer surface of said face.
Abstract:
A turbine blade and a radial turbine having at least one blade is provided. The turbine blade includes a trailing edge and a leading edge opposite the trailing edge. The turbine blade also includes a cooling passage defined internally within the turbine blade. The cooling passage is in fluid communication with a source of cooling fluid via a single inlet to receive a cooling fluid. The cooling passage diverges at a first point downstream from the single inlet into at least two branches that extend along the at least one blade from the first point to a second point near a tip of the leading edge and the cooling passage converges at the second point.
Abstract:
A turbine section includes a stator assembly having an inner diameter end wall, an outer diameter end wall, and a stator vane; a turbine rotor assembly including a rotor blade extending into the mainstream gas flow path; a housing including an annular shroud that circumscribes the rotor blade and at least partially defines the mainstream hot gas flow path; a first baffle arranged to define a first cavity with the outer diameter end wall of the stator assembly; a second baffle; and a third baffle arranged to define a second cavity with the second baffle and a third cavity with the shroud. The first cavity is fluidly coupled to the second cavity and the second cavity is fluidly coupled to the third cavity such that cooling air flows from the first cavity to the second cavity and from the second cavity to the third cavity.
Abstract:
Embodiments of a turbine nozzle are provided, as are embodiments of methods for the manufacture of turbine nozzles. In one embodiment, the turbine nozzle includes a support ring and a slip joint ring, which is substantially concentric with the support ring and radially spaced apart therefrom. The slip joint ring has a plurality of slots therein. A plurality of vanes is fixedly coupled to the support ring and extends radially therefrom into the plurality of slots. A plurality of radial slip joints is formed between the plurality of vanes and the plurality slots. Each slip joint extends around a different one of the plurality of vanes to permit relative radial movement between the plurality of vanes and the slip joint ring during operation of the turbine nozzle.
Abstract:
A turbine blade and a radial turbine having at least one blade is provided. The turbine blade includes a trailing edge and a leading edge opposite the trailing edge. The turbine blade also includes a cooling passage defined internally within the turbine blade. The cooling passage is in fluid communication with a source of cooling fluid via a single inlet to receive a cooling fluid. The cooling passage diverges at a first point downstream from the single inlet into at least two branches that extend along the at least one blade from the first point to a second point near a tip of the leading edge and the cooling passage converges at the second point.
Abstract:
Gas path components of gas turbine engines and methods for cooling the same using porous medium cooling systems are provided. The gas path component comprises a wall at least partially defining a cooling plenum and a porous medium cooling system. The wall includes a wall surface comprising a gas path surface and an opposing wall surface proximate the cooling plenum. The porous medium cooling system is disposed between the cooling plenum and the opposing wall surface. The porous medium cooling system comprises a perforated baffle and a porous material layer disposed between and adjacent the perforated baffle and the opposing wall surface. The wall includes a plurality of openings in fluid communication with the cooling plenum via the porous medium cooling system.
Abstract:
Embodiments of a turbine nozzle are provided, as are embodiments of methods for the manufacture of turbine nozzles. In one embodiment, the turbine nozzle includes a support ring and a slip joint ring, which is substantially concentric with the support ring and radially spaced apart therefrom. The slip joint ring has a plurality of slots therein. A plurality of vanes is fixedly coupled to the support ring and extends radially therefrom into the plurality of slots. A plurality of radial slip joints is formed between the plurality of vanes and the plurality slots. Each slip joint extends around a different one of the plurality of vanes to permit relative radial movement between the plurality of vanes and the slip joint ring during operation of the turbine nozzle.
Abstract:
A rotating machine includes a hub portion, wherein the hub portion comprises a forward face and an aft face. The rotating machine further includes a cooling channel formed on either the forward face or the aft face and configured to direct cooling air to a location on the rotating machine, wherein the cooling channel extends from a radially inner location along the face to a radially outer location along the face, and wherein the cooling channel is configured as a recess formed into an outer surface of the face.
Abstract:
An airfoil for a gas turbine engine is provided. The airfoil includes a body with a leading edge, a trailing edge, a first side wall extending between the leading edge and the trailing edge, and a second side wall extending between the leading edge and the trailing edge. The body defines an interior cavity. The airfoil includes an interior wall disposed within the interior cavity of the body and extending between the first wall and the second wall to define a supply chamber and a leading edge chamber. The interior wall defines a cooling hole with a base portion and a locally extended portion to direct cooling air from the supply chamber to the leading edge chamber such that the cooling air impinges upon the leading edge.