Abstract:
An accessory gear box for a gas turbine engine having a drive shaft with a rotational axis and a tower shaft coupled to the drive shaft is provided. The accessory gear box includes a first plurality of gears arranged, which extend along a first axis substantially parallel to the rotational axis of the drive shaft. The accessory gear box includes a second plurality of gears, which extend along a second axis. The accessory gear box includes a first shaft, with one of the first plurality of gears coupled to the first shaft, and one of the second plurality of gears coupled to a second shaft. The one of the second plurality of gears coupled to the first shaft includes a first engagement surface and a second engagement surface, and the second engagement surface is coupled to another one of the second plurality of gears to drive the second shaft.
Abstract:
Embodiments of a turboshaft engine are provided, as are embodiments of a method for manufacturing a turboshaft engine. In one embodiment, the turboshaft engine includes an Inlet Particle Separator (IPS) system having an IPS scavenge flow circuit fluidly coupled to the engine's inlet section. A heat exchanger and a heat exchanger bypass duct are fluidly coupled to the IPS scavenge flow circuit. The heat exchanger bypass duct is configured to direct airflow around the heat exchanger. A particle separation device, such as an IPS blower, is fluidly coupled in series with the heat exchanger in the IPS scavenge flow circuit. The particle separation device is positioned to direct particulate matter entrained within the airflow through the IPS scavenge flow circuit into an inlet of the heat exchanger bypass duct and thereby reduce the amount of particulate matter ingested by the heat exchanger during operation of the turboshaft engine.
Abstract:
An accessory gear box for a gas turbine engine having a drive shaft with a rotational axis and a tower shaft coupled to the drive shaft is provided. The accessory gear box includes a first plurality of gears arranged, which extend along a first axis substantially parallel to the rotational axis of the drive shaft. The accessory gear box includes a second plurality of gears, which extend along a second axis. The accessory gear box includes a first shaft, with one of the first plurality of gears coupled to the first shaft, and one of the second plurality of gears coupled to a second shaft. The one of the second plurality of gears coupled to the first shaft includes a first engagement surface and a second engagement surface, and the second engagement surface is coupled to another one of the second plurality of gears to drive the second shaft.
Abstract:
Embodiments of a turboshaft engine are provided, as are embodiments of a method for manufacturing a turboshaft engine. In one embodiment, the turboshaft engine includes an Inlet Particle Separator (IPS) system having an IPS scavenge flow circuit fluidly coupled to the engine's inlet section. A heat exchanger and a heat exchanger bypass duct are fluidly coupled to the IPS scavenge flow circuit. The heat exchanger bypass duct is configured to direct airflow around the heat exchanger. A particle separation device, such as an IPS blower, is fluidly coupled in series with the heat exchanger in the IPS scavenge flow circuit. The particle separation device is positioned to direct particulate matter entrained within the airflow through the IPS scavenge flow circuit into an inlet of the heat exchanger bypass duct and thereby reduce the amount of particulate matter ingested by the heat exchanger during operation of the turboshaft engine.