摘要:
A gas turbine engine includes a combustion section that generates combustive gases that form a primary exhaust flow and an exhaust system downstream from the combustion section. The exhaust system includes an eductor system that includes a body that extends along a first axis, and a plurality of ducts spaced apart about a circumference of the body. Each of the plurality of ducts define a plurality of eductor primary flow paths that terminate in a mixing chamber. The exhaust system includes a muffler system downstream from the mixing chamber that includes a plurality of baffles that cooperate to define a tortuous path and attenuate sound generated by the gas turbine engine. The exhaust system includes a housing that surrounds the eductor system and the muffler system such that the eductor system and the muffler system are contained within the housing.
摘要:
Systems and methods for an exhaust system for a gas turbine engine are provided. The method includes: receiving a primary exhaust fluid in a primary manifold; receiving a secondary cooling fluid in a secondary plenum; directing the primary exhaust fluid through a plurality of eductor primary flow paths associated with a respective plurality of ducts spaced circumferentially about a primary manifold, the plurality of eductor primary flow paths extending through the secondary plenum; and mixing the primary exhaust fluid and the secondary cooling fluid in a mixing chamber associated with a respective one of the plurality of ducts to create a mixed fluid flow.
摘要:
An inlet particle separator system for a vehicle engine includes a hub section, a shroud section, and a splitter. The hub section has a hub outer surface that diverges, relative to the axis of symmetry, to a hub apex. The shroud section has a shroud inner surface that surrounds, and is spaced apart from, at least a portion of the hub section to define a main flow passageway between the hub outer surface and the shroud inner surface. The splitter is disposed downstream of the air inlet and extends into the main flow passageway to divide the main flow passageway into a scavenge flow path and an engine flow path. The hub section and the shroud section are configured such that the cross sectional flow area of the main flow passageway decreases downstream of the air inlet to define a throat section that is disposed upstream of the hub apex.
摘要:
Systems and methods for an exhaust system for a gas turbine engine are provided. The exhaust system includes an eductor system adapted to receive a primary exhaust fluid. The eductor system includes a body that extends along a first axis, with a plurality of ducts spaced apart about a circumference of the body. Each of the plurality of ducts extend from the body along a second axis transverse to the first axis to define a plurality of eductor primary flow paths that terminate in a mixing chamber. The mixing chamber is adapted to receive a secondary cooling fluid and to mix the primary exhaust fluid with the secondary cooling fluid to create a mixed fluid flow.
摘要:
A cooling arrangement is provided for a gas turbine engine with a turbine section. The cooling arrangement includes a first conduit to receive cooling air that includes particles; a separator system coupled to the first conduit to receive the cooling air and configured to remove at least a portion of the particles to result in relatively clean cooling air and scavenge air including the portion of the particles; and a second conduit coupled to the separator system and configured to direct the relatively clean cooling air to the turbine section.
摘要:
An inlet particle separator system for a vehicle engine includes a hub section, a shroud section, a splitter section, and an injection opening. The shroud section surrounds at least a portion of the hub section and is spaced apart therefrom to define a passageway having an air inlet. The splitter is disposed downstream of the air inlet and extends into the passageway to divide the passageway into a scavenge flow path and an engine flow path. The injection opening is formed in and extends through the hub section, and is disposed downstream of the air inlet.
摘要:
Embodiments of a turboshaft engine are provided, as are embodiments of a method for manufacturing a turboshaft engine. In one embodiment, the turboshaft engine includes an Inlet Particle Separator (IPS) system having an IPS scavenge flow circuit fluidly coupled to the engine's inlet section. A heat exchanger and a heat exchanger bypass duct are fluidly coupled to the IPS scavenge flow circuit. The heat exchanger bypass duct is configured to direct airflow around the heat exchanger. A particle separation device, such as an IPS blower, is fluidly coupled in series with the heat exchanger in the IPS scavenge flow circuit. The particle separation device is positioned to direct particulate matter entrained within the airflow through the IPS scavenge flow circuit into an inlet of the heat exchanger bypass duct and thereby reduce the amount of particulate matter ingested by the heat exchanger during operation of the turboshaft engine.
摘要:
A method for scavenging small particles from a turbine engine includes directing compressed air through a flowpath, downstream of a compressor, which causes a reduction in a radial flow component and the introduction of or an increase in an axial flow component of the compressed air, removing a portion of the compressed air from the flowpath and directing the portion into a scavenge plenum, the scavenge plenum being positioned adjacent to and radially outward from the flowpath, and returning the portion of the compressed air from the plenum to the flowpath while maintaining a majority of the small particles that were present in the portion within the scavenge plenum. Further, the method includes removing the majority of small particles from the plenum. The step of removing occurs intermittently during engine operation, during engine shutdown, or while the engine is not in operation, but does not occur continuously during engine operation.
摘要:
A turbine engine incorporating a fine particle separation means includes a radial compressor that rotates about a longitudinal axis, a radially-oriented diffuser located downstream and radially outward, with respect to the longitudinal axis, from the radial compressor, and a flow path positioned downstream and radially outward, with respect to the longitudinal axis, from the diffuser, wherein the flow path comprises an outer annular wall and an inner annular wall between which the compressed air flows, and wherein the flow path comprises an arc the redirects the compressed air from flowing in a substantially radial flow direction to a substantially axial flow direction. The turbine engine further includes an extraction slot in the outer annular wall that fluidly connects with a scavenge plenum, the scavenge plenum being positioned adjacent to and radially outward from the outer annular wall at a position downstream axially along the flow path from the arc.
摘要:
Plenums for bifurcated ducts and bifurcated ducts are provided for stabilizing flow therethrough. The plenum comprises an outer cylindrical body intersected by a pair of exhaust duct stubs that are configured to be coupled to a corresponding pair of exhaust ducts and an inner body. The outer cylindrical body includes an axial rear end portion. The inner body is disposed in the axial rear end portion and increases in diameter in the aft direction. The inner body comprises one of a generally axi-symmetrical inner body or a non-axi-symmetrical inner body. The bifurcated duct comprises the plenum and the pair of exhaust ducts. Exhaust systems are also provided.