摘要:
The present invention provides, among other aspects, storage stabile aqueous formulations of labile proteins at a mildly acidic to neutral pH. The present invention also provides methods for stabilizing a labile therapeutic protein composition at a mildly acidic to neutral pH. Advantageously, the methods and formulations provided herein allow stabile aqueous compositions of labile proteins at mildly acidic to neutral pH useful for parenteral administration.
摘要:
The invention relates generally to methods of concentrating mixtures including shear sensitive biopolymers, such as von Willebrand Factor. Conventional methods of concentrating biopolymers impart too much shear stress, which causes the degradation of shear sensitive biopolymers. The methods disclosed herein reduce the shear stress while maintaining a high rate of filtrate flux. Disclosed herein is a method for concentrating shear sensitive biopolymers including flowing a mixture with a shear sensitive biopolymer into a hollow fiber dialysis module to form a retentate having a shear sensitive biopolymer concentration that is greater than that of the mixture. Hollow fiber dialysis modules have high filtrate fluxes and low shear rates at low flow rates. This ensures a high product yield and minimal loss of shear sensitive biopolymers.
摘要:
The present invention relates to a method for producing a mature von Willebrand Factor (VWF) from von Willebrand Factor pro-peptide comprising the steps: immobilizing VWF pro-peptide on an ion exchange resin, incubating the immobilized VWF pro-peptide with furin to obtain immobilized mature VWF, and isolating mature VWF from the ion exchange resin by elution.
摘要:
The present invention relates to a method for producing a mature von Willebrand Factor (VWF) from von Willebrand Factor pro-peptide comprising the steps: immobilizing VWF pro-peptide on an ion exchange resin, incubating the immobilized VWF pro-peptide with furin to obtain immobilized mature VWF, and isolating mature VWF from the ion exchange resin by elution.
摘要:
Provided herein are methods for purifying recombinant A Disintegrin-like and Metallopeptidase with Thrombospondin Type 1 Motif 13 (ADAMTS13) protein from a sample. The method comprises enriching for ADAMTS13 protein by chromatographically contacting the sample with hydroxyapatite under conditions that allow ADAMTS13 protein to appear in the eluate or supernatant from the hydroxylapatite. The methods may further comprise tandem chromatography with a mixed mode cation exchange/hydrophobic interaction resin that binds ADAMTS13 protein. Additional optional steps involve ultrafiltration/diafiltration, anion exchange chromatography, cation exchange chromatography, and viral inactivation. Also provided herein are methods for inactivating virus contaminants in protein samples, where the protein is immobilized on a support. Also provided herein are compositions of ADAMTS13 prepared according to said methods.
摘要:
Provided herein are methods for purifying recombinant A Disintegrin-like and Metallopeptidase with Thrombospondin Type 1 Motif 13 (ADAMTS13) protein from a sample. The method comprises enriching for ADAMTS13 protein by chromatographically contacting the sample with hydroxyapatite under conditions that allow ADAMTS13 protein to appear in the eluate or supernatant from the hydroxylapatite. The methods may further comprise tandem chromatography with a mixed mode cation exchange/hydrophobic interaction resin that binds ADAMTS13 protein. Additional optional steps involve ultrafiltration/diafiltration, anion exchange chromatography, cation exchange chromatography, and viral inactivation. Also provided herein are methods for inactivating virus contaminants in protein samples, where the protein is immobilized on a support. Also provided herein are compositions of ADAMTS13 prepared according to said methods.
摘要:
The invention relates generally to methods of concentrating mixtures including shear sensitive biopolymers, such as von Willebrand Factor. Conventional methods of concentrating biopolymers impart too much shear stress, which causes the degradation of shear sensitive biopolymers. The methods disclosed herein reduce the shear stress while maintaining a high rate of filtrate flux. Disclosed herein is a method for concentrating shear sensitive biopolymers including flowing a mixture with a shear sensitive biopolymer into a hollow fiber dialysis module to form a retentate having a shear sensitive biopolymer concentration that is greater than that of the mixture. Hollow fiber dialysis modules have high filtrate fluxes and low shear rates at low flow rates. This ensures a high product yield and minimal loss of shear sensitive biopolymers.