摘要:
An acoustic signal traversing a hot gas is sampled at a source and a receiver and is represented in overlapping windows that maximize useable signal content. Samples in each window are processed to represented in different sparsified bins in the frequency domain. Determining a signal delay between the source and the receiver from a summation of maximum smoothed coherence transform cross-correlation values of different data windows wherein a sparseness of a mean smoothed coherence transform cross-correlation of windows is maximized. Determining a set of delay times wherein outliers are deleted to estimate a time of flight from which a temperature of the hot gas is calculated.
摘要:
A method and apparatus for operating a gas turbine engine including determining a temperature of a working gas at a predetermined axial location within the engine. An acoustic signal is encoded with a distinct signature defined by a set of predetermined frequencies transmitted as a non-broadband signal. Acoustic signals are transmitted from an acoustic transmitter located at a predetermined axial location along the flow path of the gas turbine engine. A received signal is compared to one or more transmitted signals to identify a similarity of the received signal to a transmitted signal to identify a transmission time for the received signal. A time-of-flight is determined for the signal and the time-of-flight for the signal is processed to determine a temperature in a region of the predetermined axial location.
摘要:
An acoustic signal traversing a hot gas is sampled at a source and a receiver and is represented in overlapping windows that maximize useable signal content. Samples in each window are processed to represented in different sparsified bins in the frequency domain. Determining a signal delay between the source and the receiver from a summation of maximum smoothed coherence transform cross-correlation values of different data windows wherein a sparseness of a mean smoothed coherence transform cross-correlation of windows is maximized. Determining a set of delay times wherein outliers are deleted to estimate a time of flight from which a temperature of the hot gas is calculated.
摘要:
A system and methods to deblend seismic data from a plurality of sources and received by a plurality of sensors as shot gathers are disclosed. The deblending is performed by a Mutual Interdependence Analysis Method to separate contributions of different shots. Deblending is also performed by applying a measure of coherence in parallel data domains such as Common Shot Gather and Common Midpoint. Deblending is also achieved by using the hyperbolic nature of seismic data in the common midpoint domain. Deblended signals are estimated and are applied to create a seismic image. Also, Bergman iteration based migration is applied directly on the blended seismic shot gathers without first deblending as an alternative method. The methods are applied in seismic imaging for exploration of natural resources.
摘要:
A patient monitoring and intervention system, comprises an interface for receiving data representing multiple different parameters from multiple different sensors, comprising sensors in a patient bed and attached to a patient including, a heart rate sensor, a respiration sensor and a pressure sensor indicating bed pressure points. A learning processor determines a normal range for a set of the different received patient parameters for the patient by recording the patient parameter values over a time period and analyzing the recorded parameter values to determine their range. A data processor determines if the set of different received patient parameters exceeds the determined normal range and in response to this determination and in response to the type of parameters in the set and medical record information of the patient, initiates adjustment of a patient bed and at least one of, (a) changes medication administered to a patient and (b) alerts a worker of the patient parameter change.
摘要:
A method for determining a signature vector of a high dimensional dataset includes initializing a mutual interdependence vector wGMIA from a a set X of N input vectors of dimension D, where N≦D, randomly selecting a subset S of n vectors from set X, where n is such that n>>1 and n
摘要:
Methods related to Generalized Mutual Interdependence Analysis (GMIA), a low complexity statistical method for projecting data in a subspace that captures invariant properties of the data, are implemented on a processor based system. GMIA methods are applied to the signal processing problem of voice activity detection and classification. Real-world conversational speech data are modeled to fit the GMIA assumptions. Low complexity GMIA computations extract reliable features for classification of sound under noisy conditions and operate with small amounts of data. A speaker is characterized by a slow varying or invariant channel that is learned and is tracked from single channel data by GMIA methods.
摘要:
Own voice recognition (OVR) for hearing aids, detects time instances where the person wearing the device is speaking. Classification of the own voice is performed dependent on a fixed or adaptive detection threshold. Automatic tuning in a real-time system depends on general noise statistics in the input signals. The noise is removed from the received signal and is characterized by signal-to-noise ratio and noise color. An optimal detection threshold for own voice recognition is determined based on the noise characteristics. A noise detection model is created by smoothed Voronoi tessellation. Own voice detection is performed by a processor.
摘要:
Methods for one-class learning using support vector machines from a plurality of data batches are provided. A first support vector machine is learned from the plurality of data batches by a processor. A new data batch is received by the processor and is classified by the first support vector machine. If a non-zero loss classification occurs a new support vector machine is trained using the first support vector machine and the new data batch only. Data batches can be discarded if they are represented by the current support vector machine or after being used for training an updated support vector machine. Weighing factors applied to update the first support vector machine depend upon a parameter which is optimized iteratively. Support vectors do not need to be recalculated. A classifier is learned in a number of stages equal to the number of data batches processed on-line.
摘要:
Own voice recognition (OVR) for hearing aids, detects time instances where the person wearing the device is speaking. Classification of the own voice is performed dependent on a fixed or adaptive detection threshold. Automatic tuning in a real-time system depends on general noise statistics in the input signals. The noise is removed from the received signal and is characterized by signal-to-noise ratio and noise color. An optimal detection threshold for own voice recognition is determined based on the noise characteristics. A noise detection model is created by smoothed Voronoi tessellation. Own voice detection is performed by a processor.