METHOD AND DEVICE FOR CREATING A DATA-BASED FUNCTION MODEL
    1.
    发明申请
    METHOD AND DEVICE FOR CREATING A DATA-BASED FUNCTION MODEL 有权
    用于创建基于数据的功能模型的方法和装置

    公开(公告)号:US20140309754A1

    公开(公告)日:2014-10-16

    申请号:US14247104

    申请日:2014-04-07

    IPC分类号: G05B13/04 G06N99/00

    CPC分类号: G05B13/04 G06N99/005

    摘要: A method for generating a data-based function model includes: providing a first data-based partial model ascertained from a first training data record; providing at least one additional training data record; and performing the following steps for the at least one additional training data record: ascertaining a difference training data record having training data which correspond to the differences between the output values of the relevant additional training data record and the function value of the sum of the partial function values (ffirst—partial—model(x) fsecond—partial—model(x)) of the first data-based partial model and previously ascertained data-based partial model(s) at each of the measuring points of the relevant training data record; ascertaining an additional data-based partial model from the difference training data record; and forming a sum (f(x)) from the first and the additional data-based partial models.

    摘要翻译: 一种用于生成基于数据的功能模型的方法包括:提供从第一训练数据记录确定的第一基于数据的部分模型; 提供至少一个额外的训练数据记录; 以及对所述至少一个附加训练数据记录执行以下步骤:确定具有与所述相关附加训练数据记录的输出值之间的差异相对应的训练数据的差分训练数据记录与所述部分 第一基于数据的部分模型的功能值(ffirst-partial-model(x)fsecond-partial-model(x))和先前确定的相关训练数据的每个测量点的基于数据的部分模型 记录; 从差分训练数据记录中确定附加的基于数据的部分模型; 以及从第一个和附加的基于数据的部分模型形成和(f(x))。

    METHOD AND DEVICE FOR CREATING A FUCNTION MODEL FOR A CONTROL UNIT OF AN ENGINE SYSTEM
    3.
    发明申请
    METHOD AND DEVICE FOR CREATING A FUCNTION MODEL FOR A CONTROL UNIT OF AN ENGINE SYSTEM 审中-公开
    用于创建发动机系统控制单元的模型的方法和装置

    公开(公告)号:US20140310210A1

    公开(公告)日:2014-10-16

    申请号:US14247121

    申请日:2014-04-07

    IPC分类号: G06N99/00

    CPC分类号: G06N20/00

    摘要: A computerized method for creating a function model based on a non-parametric, data-based model, e.g., a Gaussian process model, includes: providing training data including measuring points having one or multiple input variables, the measuring points each being assigned an output value of an output variable; providing a basic function; modifying the training data with the aid of difference formation between the function values of the basic function and the output values at the measuring points of the training data; creating the data-based model based on the modified training data; and providing the function model as a function of the data-based model and the basic function.

    摘要翻译: 用于基于非参数的基于数据的模型(例如,高斯过程模型)来创建功能模型的计算机化方法包括:提供包括具有一个或多个输入变量的测量点的训练数据,每个测量点被分配输出 输出变量的值; 提供基本功能; 借助于基本功能的功能值与训练数据的测量点的输出值之间的差异形成来修改训练数据; 基于修改的训练数据创建基于数据的模型; 并提供功能模型作为基于数据的模型和基本功能的函数。

    METHOD AND DEVICE FOR CREATING A NONPARAMETRIC, DATA-BASED FUNCTION MODEL
    4.
    发明申请
    METHOD AND DEVICE FOR CREATING A NONPARAMETRIC, DATA-BASED FUNCTION MODEL 审中-公开
    用于创建非基于数据的功能模型的方法和装置

    公开(公告)号:US20140310212A1

    公开(公告)日:2014-10-16

    申请号:US14247623

    申请日:2014-04-08

    IPC分类号: G06F17/50 G06N99/00

    CPC分类号: G06F17/5009 G06N20/00

    摘要: A method for ascertaining a nonparametric, data-based function model, in particular a Gaussian process model, using provided training data, the training data including a number of measuring points which are defined by one or multiple input variables and which each have assigned output values of at least one output variable, including: selecting one or multiple of the measuring points as certain measuring points or adding one or multiple additional measuring points to the training data as certain measuring points; assigning a measuring uncertainty value of essentially zero to the certain measuring points; and ascertaining the nonparametric, data-based function model according to an algorithm which is dependent on the certain measuring points of the modified training data and the measuring uncertainty values assigned in each case.

    摘要翻译: 一种使用提供的训练数据来确定非参数的基于数据的功能模型,特别是高斯过程模型的方法,所述训练数据包括由一个或多个输入变量定义并且各自具有分配的输出值的多个测量点 至少一个输出变量,包括:选择一个或多个测量点作为某些测量点,或者将一个或多个附加测量点添加到训练数据作为某些测量点; 向某些测量点分配基本为零的测量不确定度值; 并且根据取决于修改的训练数据的某些测量点的算法和在每种情况下分配的测量不确定性值来确定非参数的基于数据的功能模型。