摘要:
By introducing new concepts into a structure of a conventional organic semiconductor element and without using a conventional ultra thin film, an organic semiconductor element is provided which is more reliable and has higher yield. Further, efficiency is improved particularly in a photoelectronic device using an organic semiconductor. Between an anode and a cathode, there is provided an organic structure including alternately laminated organic thin film layer (functional organic thin film layer) realizing various functions by making an SCLC flow, and a conductive thin film layer (ohmic conductive thin film layer) imbued with a dark conductivity by doping it with an acceptor and a donor, or by the like method.
摘要:
An EL element which is thicker and lower-voltage drive without doping acceptor or donor than the conventional one. An EL element in which an electroluminescent film 103 containing an organic compound which can provide electroluminescent, a floating electrode 104, an electron transport supporting layer 105 and a cathode 102 are in order laminated on an anode 101. A film thickness of the electroluminescent film 103 is on the order of a conventional film thickness (on the order of approximately 100 nm), and the electron transport supporting layer 105 may also have a film thickness on the order of the electroluminescent film 103. The EL element can be driven at lower voltage than the conventional one by introducing a hole blocking material into an electron transport supporting layer.
摘要:
The present invention provides a white organic light-emitting element high in the emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in the emission efficiency.Since a spectrum region lowest in the emission efficiency is a red region, by introducing a reddish phosphorescent material, a highly efficient white organic light-emitting element is obtained. At this time, in order to inhibit the reddish phosphorescent material from singularly emitting, as shown in FIG. 1, a distance between a second emission region 114 where a reddish phosphorescent material 124 is a luminescent material and a first emission region 113 that exhibits emission in a shorter wavelength side than the second emission region is separated. In a configuration shown in FIG. 1, it is preferable to use an electron transport material in a layer 115 between the first emission region and the second emission region and more preferable to use a hole block material.
摘要:
The present invention is to provide quinoxaline derivatives, which have excellent electron transportation and hole blocking properties, and which can be formed into a film without being crystallized. According to the invention, quinoxaline derivatives represented by the general [formula 1] are synthesized. (wherein X and Y represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group, and R1 to R6 represent individually hydrogen, an alkyl group, an alkoxyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group. Further, an organic semiconductor device including an electroluminescent device containing the foregoing quinoxaline derivatives is formed.)
摘要:
An EL element which is thicker and lower-voltage drive without doping acceptor or donor than the conventional one. An EL element in which an electroluminescent film 103 containing an organic compound which can provide electroluminescent, a floating electrode 104, an electron transport supporting layer 105 and a cathode 102 are in order laminated on an anode 101. A film thickness of the electroluminescent film 103 is on the order of a conventional film thickness (on the order of approximately 100 nm), and the electron transport supporting layer 105 may also have a film thickness on the order of the electroluminescent film 103. The EL element can be driven at lower voltage than the conventional one by introducing a hole blocking material into an electron transport supporting layer.
摘要:
The present invention provides a white organic light-emitting element high in the emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in the emission efficiency. Since a spectrum region lowest in the emission efficiency is a red region, by introducing a reddish phosphorescent material, a highly efficient white organic light-emitting element is obtained. At this time, in order to inhibit the reddish phosphorescent material from singularly emitting, as shown in FIG. 1, a distance between a second emission region 114 where a reddish phosphorescent material 124 is a luminescent material and a first emission region 113 that exhibits emission in a shorter wavelength side than the second emission region is separated. In a configuration shown in FIG. 1, it is preferable to use an electron transport material in a layer 115 between the first emission region and the second emission region and more preferable to use a hole block material.
摘要:
The present invention provides a white organic light-emitting element high in the emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in the emission efficiency.Since a spectrum region lowest in the emission efficiency is a red region, by introducing a reddish phosphorescent material, a highly efficient white organic light-emitting element is obtained. At this time, in order to inhibit the reddish phosphorescent material from singularly emitting, as shown in FIG. 1, a distance between a second emission region 114 where a reddish phosphorescent material 124 is a luminescent material and a first emission region 113 that exhibits emission in a shorter wavelength side than the second emission region is separated. In a configuration shown in FIG. 1, it is preferable to use an electron transport material in a layer 115 between the first emission region and the second emission region and more preferable to use a hole block material.
摘要:
To provide a light emitting element having a top emission structure, which can be easily manufactured without considering an ionization potential of an electrode (particularly an electrode in contact with a substrate) and a manufacturing method therefor. A light emitting device having the top emission structure according to the present invention includes: a first electrode (101) formed of general-purpose metal (specifically, a wiring material such as Ti or Al) having a light-shielding property or reflectivity; a conductive polymer layer (102) formed by applying a conductive polymer material onto the first electrode (101); an electroluminescence film (103) formed in contact with the conductive polymer layer (102); and a light-transmissive second electrode (104) formed on the electroluminescence film 103, in which the conductive polymer layer (102) is formed of materials including a redox polymer etc., while being free of problems regarding work function (as shown in FIG. 1A).
摘要:
The present invention provides a white organic light-emitting element high in emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in emission efficiency.
摘要:
The present invention provides a white organic light-emitting element high in the emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in the emission efficiency.Since a spectrum region lowest in the emission efficiency is a red region, by introducing a reddish phosphorescent material, a highly efficient white organic light-emitting element is obtained. At this time, in order to inhibit the reddish phosphorescent material from singularly emitting, as shown in FIG. 1, a distance between a second emission region 114 where a reddish phosphorescent material 124 is a luminescent material and a first emission region 113 that exhibits emission in a shorter wavelength side than the second emission region is separated. In a configuration shown in FIG. 1, it is preferable to use an electron transport material in a layer 115 between the first emission region and the second emission region and more preferable to use a hole block material.