摘要:
By introducing new concepts into a structure of a conventional organic semiconductor element and without using a conventional ultra thin film, an organic semiconductor element is provided which is more reliable and has higher yield. Further, efficiency is improved particularly in a photoelectronic device using an organic semiconductor. Between an anode and a cathode, there is provided an organic structure including alternately laminated organic thin film layer (functional organic thin film layer) realizing various functions by making an SCLC flow, and a conductive thin film layer (ohmic conductive thin film layer) imbued with a dark conductivity by doping it with an acceptor and a donor, or by the like method.
摘要:
By introducing new concepts into a structure of a conventional organic semiconductor element and without using a conventional ultra thin film, an organic semiconductor element is provided which is more reliable and has higher yield. Further, efficiency is improved particularly in a photoelectronic device using an organic semiconductor. Between an anode and a cathode, there is provided an organic structure including alternately laminated organic thin film layer (functional organic thin film layer) realizing various functions by making an SCLC flow, and a conductive thin film layer (ohmic conductive thin film layer) imbued with a dark conductivity by doping it with an acceptor and a donor, or by the like method.
摘要:
There is provided an electroluminescent element using a material that is excellent in film forming properties and carrier transporting properties, emits a light in the solid state, and can be suitably used also as a host material. The electroluminescent element has an electroluminescence layer between a couple of electrodes, and a complex of a Group 4 metal of the periodic table, which is excellent in the film forming properties and the carrier transporting properties and capable of emitting a light in the solid state, is used in a part of the electroluminescence layer to form the electroluminescent element. The complex of a Group 4 metal of the periodic table has an emission wavelength on a longer wavelength side as compared with conventional host materials such as Alq3, and thereby may be combined with a red light emitting guest material to form a light emitting layer.
摘要:
An organic light-emitting device is manufactured, which is formed laminating an electroluminescent layer (111) including an electroluminescent organic compound and a cathode (109) sequentially on anode (101). The electroluminescent layer (111) has a hole blocking layer (106), and this hole blocking layer (106) is formed of two or more kinds of materials. It is possible to manufacture a high-efficiency and high-reliability organic light-emitting device by introducing the hole blocking layer like this.
摘要:
To provide a material for an electroluminescence element of which a buffer layer can be formed without using water as a solvent unlike a conventional polymer material used in a buffer layer, and an electroluminescence element using the same. According to the present invention, in an electroluminescence (EL) element including a first electrode (101), a buffer layer (102), an electroluminescence (EL) film (103), and a second electrode (104) (as shown in FIG. 1A), a conductive material is used as the buffer layer (102) formed on the first electrode (101). The conductive material includes: a polymer compound (so-called conjugate polymer) soluble in an organic solvent, which has a conjugate on a main or side chain thereof; and a compound soluble in an organic solvent, which has acceptor or donor properties for the polymer compound.
摘要:
By introducing new concepts into a structure of a conventional organic semiconductor element and without using a conventional ultra thin film, an organic semiconductor element is provided which is more reliable and has higher yield. Further, efficiency is improved particularly in a photoelectronic device using an organic semiconductor. Between an anode and a cathode, there is provided an organic structure including alternately laminated organic thin film layer (functional organic thin film layer) realizing various functions by making an SCLC flow, and a conductive thin film layer (ohmic conductive thin film layer) imbued with a dark conductivity by doping it with an acceptor and a donor, or by the like method.
摘要:
The present invention provides a white organic light-emitting element high in the emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in the emission efficiency. Since a spectrum region lowest in the emission efficiency is a red region, by introducing a reddish phosphorescent material, a highly efficient white organic light-emitting element is obtained. At this time, in order to inhibit the reddish phosphorescent material from singularly emitting, as shown in FIG. 1, a distance between a second emission region 114 where a reddish phosphorescent material 124 is a luminescent material and a first emission region 113 that exhibits emission in a shorter wavelength side than the second emission region is separated. In a configuration shown in FIG. 1, it is preferable to use an electron transport material in a layer 115 between the first emission region and the second emission region and more preferable to use a hole block material.
摘要:
The present invention is to provide quinoxaline derivatives, which has excellent electron transportation and hole blocking properties, and which can be formed into a film without being crystallized. According to the invention, quinoxaline derivatives represented by the general [formula 1] is synthesized. (wherein X and Y represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group, and R1 to R6 represent individually hydrogen, an alkyl group, an alkoxyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group. Further, an organic semiconductor device including an electroluminescent device containing the foregoing quinoxaline derivatives is formed.)
摘要:
The present invention provides a white organic light-emitting element high in emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in emission efficiency.
摘要:
The present invention provides a white organic light-emitting element high in the emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in the emission efficiency.Since a spectrum region lowest in the emission efficiency is a red region, by introducing a reddish phosphorescent material, a highly efficient white organic light-emitting element is obtained. At this time, in order to inhibit the reddish phosphorescent material from singularly emitting, as shown in FIG. 1, a distance between a second emission region 114 where a reddish phosphorescent material 124 is a luminescent material and a first emission region 113 that exhibits emission in a shorter wavelength side than the second emission region is separated. In a configuration shown in FIG. 1, it is preferable to use an electron transport material in a layer 115 between the first emission region and the second emission region and more preferable to use a hole block material.