Abstract:
An operation request generating method, including a generation device generates a first operation request that requests to perform an operation on a first packet, where the first operation request includes first assignment content and information used to indicate a first assignment location, the first assignment location is a location in the first packet, the first assignment content is data used to assign a value to the first assignment location, and the information used to indicate the first assignment location includes an identifier of a type of a first packet header, a first offset, and a first length, where the first packet header is a packet header in the first packet, and the first offset is an offset relative to a start location of the first packet header, and the generation device sends the first operation request to a description device or a receiving device.
Abstract:
An example exchange method includes: receiving, through a first interface, M bits; after receiving the M bits, receiving M bytes through the first interface, wherein each of the M bits indicates a status of a corresponding byte in the M bytes; encapsulating, based on the M bits corresponding to the M bytes, L bytes of the M bytes to obtain L encapsulated bytes, wherein M and L are integers greater than or equal to 1, and L is less than M; exchanging the L encapsulated bytes to a second interface; decapsulating the L encapsulated bytes to obtain L decapsulated bytes; and sending the L decapsulated bytes through the second interface.
Abstract:
This application discloses a flexible Ethernet group establishment method and a device. The method includes: determining that there are at least M physical layer PHY links; receiving at least M delay test requests sent by a near-end device; determining, by the far-end device, at least M receiving time points at which the at least M delay test requests are received; and determining M PHY links used to establish a flexible Ethernet group, from the at least M PHY links based on the at least M receiving time points, where a delay difference between any two of the M PHY links satisfies a preset delay condition. According to the method in this application, the delay difference between the any two PHY links is accurately determined based on time points at which delay test requests are received over any two PHY links.
Abstract:
A method includes: sending a first boundary bit block; sequentially sending an Ith bit block; determining a first parity check result and a second parity check result, where a check object of the first parity check result includes m consecutive bits of each bit block in the N bit blocks, a check object of the second parity check result includes n consecutive bits of each bit block in the N bit blocks, and at least one of m and n is greater than or equal to 2; and sending a second boundary bit block, the first parity check result, and the second parity check result.
Abstract:
A method applicable to a commonest application scenario, the method includes: an AR receives a first packet sent in a unicast manner by a CGN. The first packet includes information for indicating Restart announce, the first packet's source address is the CGN's address, and the first packet's destination address is the AR's address; AR changes the first packet's destination address to an address of a CPE connected to the AR, to obtain a second packet, where the AR and the CPE are connected by using a Layer 2 network, and the CPE's address is a multicast address; and the AR sends the second packet. The method is used for quickly informing, after the CGN restarts or undergoes an active/standby switchover, the CPE that an exception occurs, for example, the CGN restarts or undergoes an active/standby switchover, so that a CGN has relatively small load when recreating NAT mapping.
Abstract:
A method and network node for obtaining a target transmission path, where the method includes obtaining, by a first network node in a network domain, topology information of a plurality of network nodes on each path between an ingress node and an egress node that are in the network domain, obtaining, by the first network node, a transmission delay of each path according to the topology information, where the transmission delay of each path includes a sum of physical link delays between all network nodes on each path and node residence times of all the network nodes on each path, and determining, by the first network node, the target transmission path according to the transmission delay of each path.
Abstract:
Embodiments of the present disclosure provide a method for allocating an external network IP address in NAT traversal, and a device and a system. The method includes: receiving a request message sent by a client and is for establishing a NAT mapping entry corresponding to a connection, where the request message includes a designated external network IP address, and the external network IP address is the same as an external network IP address in a NAT mapping entry corresponding to any connection already established by a same application; and when the NAT mapping entry is established according to the received request message, allocating, according to the designated external network IP address in the request message, an IP address which is the same as the designated external network IP address and used as an external network IP address of the NAT mapping entry to be established.
Abstract:
The present disclosure relates to operation, administration and maintenance (OAM) data transmission methods and apparatuses. One example method includes obtaining, by a first node, a first data flow of a client. The first node inserts an OAM data block in the first data flow of the client to obtain a second data flow of the client, where the OAM data block is a 64B/66B code block that carries OAM data. The first node distributes the second data flow of the client to at least one slot of a channel corresponding to the client.
Abstract:
A troubleshooting method, a device, and a readable storage medium are provided, to detect a unidirectional fault in a ring Ethernet and provide a fault recovery mechanism after the unidirectional fault occurs. In embodiments of this application, if determining that a link corresponding to a receiving unit of a first port is in a fault status, the first device performs loopback on the first port, and sends a first continuity check message to a second device via the first port. The first continuity check message carries first indication information. The first indication information indicates that a link corresponding to a receiving unit of a port that sends the first indication information is in a fault status.
Abstract:
The present disclosure relates to operation, administration and maintenance (OAM) data transmission methods and apparatus. One example method includes obtaining a first data flow of a client, inserting an OAM data block in the first data flow of the client to obtain a second data flow of the client, where the OAM data block is a 64B/66B code block that carries OAM data, and distributing the second data flow of the client to at least one slot of a channel corresponding to the client.