Abstract:
An embodiment of the present disclosure contemplates a data sending and receiving method and apparatus. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device and error correction capability of a receiving device could be improved. In addition, in the present disclosure, an operation of writing by row and reading by column does not need to be performed. Therefore, no delay is generated.
Abstract:
A service traffic adjustment method includes a first controller obtaining a first limit value of a traffic parameter and a second limit value of the traffic parameter. The first controller obtains a target value of the traffic parameter based on the first limit value of the traffic parameter, the second limit value of the traffic parameter, and configuration information of a forwarding device through which the service flow passes. The target value of the traffic parameter meets a delay requirement of the service flow, the target value falls within a range determined based on the first limit value of the traffic parameter and the second limit value of the traffic parameter, and the first limit value is not equal to the second limit value. The first controller sends the target value of the traffic parameter.
Abstract:
A network configuration method includes determining an end-to-end latency upper bound of data traffic between two end nodes, determining an end-to-end latency constraint of the data traffic between the two end nodes, determining, based on the end-to-end latency upper bound and the end-to-end latency constraint, for a first network shaper, at least one configuration parameter that satisfies the end-to-end latency constraint, and configuring the first network shaper for the data traffic based on the at least one configuration parameter such that the traffic after being shaped by the shaper satisfies the network latency constraint.
Abstract:
An embodiment of the present invention discloses a data sending and receiving method. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device and error correction capability of a receiving device could be improved. In addition, in the present invention, an operation of writing by row and reading by column does not need to be performed. Therefore, no delay is generated.
Abstract:
An embodiment of the present invention discloses a data sending and receiving method. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device and error correction capability of a receiving device could be improved. In addition, in the present invention, an operation of writing by row and reading by column does not need to be performed. Therefore, no delay is generated.
Abstract:
A service traffic adjustment method includes a first controller obtaining a first limit value of a traffic parameter and a second limit value of the traffic parameter. The first controller obtains a target value of the traffic parameter based on the first limit value of the traffic parameter, the second limit value of the traffic parameter, and configuration information of a forwarding device through which the service flow passes. The target value of the traffic parameter meets a delay requirement of the service flow, the target value falls within a range determined based on the first limit value of the traffic parameter and the second limit value of the traffic parameter, and the first limit value is not equal to the second limit value. The first controller sends the target value of the traffic parameter.
Abstract:
A method includes: obtaining, by a control device, a service requirement latency of transmitting a data stream from a first network device to a second network device; obtaining, by the control device, a network device transmission latency on a forwarding path and a link transmission latency on the forwarding path; and determining, by the control device based on the service requirement latency of the data stream and the network device transmission latency and the link transmission latency on the path for forwarding the data stream, a required bandwidth for transmitting the data stream.
Abstract:
An embodiment of the present disclosure contemplates a data sending and receiving method and apparatus. A first FEC unit of a sending device sends, by using a first channel, a first data stream on which first FEC encoding has been performed; a second FEC unit of the sending device sends, by using a second channel, a second data stream on which second FEC encoding has been performed; and the sending device performs interleaving on the first data stream and the second data stream, to obtain an output data stream, and sends the output data stream to a receiving device.
Abstract:
A method for generating an Ethernet frame includes generating the Ethernet frame including a protection field, where a protection range of the protection field includes a destination MAC address field in the Ethernet frame. A method for processing an Ethernet frame includes receiving a plurality of bytes in the Ethernet frame, where the plurality of bytes include information about the destination MAC address field and information about the protection field; and checking information within the protection range of the protection field based on the information about the protection field.
Abstract:
A method includes a network device receiving a plurality of fragments of an Ethernet frame, where the plurality of fragments include an initial fragment and a first fragment, and where the initial fragment includes a destination media access control (MAC) address field. In response to an error occurring in the Ethernet frame, the first fragment is changed to a second fragment, where the second fragment includes second type indication information (TII) and second to-be-transmitted data (TBTD), where the second TII indicates that a type of the second TBTD is a control character, where a value of first TBTD is different from a value of the second TBTD, and where the second TBTD indicates that an error occurs in the Ethernet frame. The network device sends the second fragment to a destination device.