Abstract:
A method and an apparatus for sending uplink/downlink scheduling information, and a method and an apparatus for receiving uplink/downlink scheduling information are provided. The method for sending downlink scheduling information includes: determining, in downlink subframes on a second carrier, a first downlink subframe, in which at time corresponding to the first downlink subframe, a subframe on a first carrier is an uplink subframe; and sending, on a fifth downlink subframe on the first carrier, downlink scheduling information corresponding to the first downlink subframe on the second carrier to a terminal, in which time corresponding to the fifth downlink subframe is prior to the time corresponding to the first downlink subframe. The present invention achieves the purpose of performing uplink and downlink scheduling on a second carrier through a first carrier bearing a PDCCH.
Abstract:
The present invention provides a method and an apparatus for sending uplink/downlink scheduling information, and a method and an apparatus for receiving uplink/downlink scheduling information. The method for sending downlink scheduling information includes: determining, in downlink subframes on a second carrier, a first downlink subframe, in which at time corresponding to the first downlink subframe, a subframe on a first carrier is an uplink subframe; and sending, on a fifth downlink subframe on the first carrier, downlink scheduling information corresponding to the first downlink subframe on the second carrier to a terminal, in which time corresponding to the fifth downlink subframe is before the time corresponding to the first downlink subframe. The present invention achieves the purpose of performing uplink and downlink scheduling on a second carrier through a first carrier bearing a PDCCH.
Abstract:
Embodiments of the present invention disclose a method, a base station, and a system for sending RRC signaling, and in the method for sending RRC signaling provided in the embodiments of the present invention, a pico base station and a macro base station participate in configuration and generation of an RRC reconfiguration message; the pico base station establishes only one RRC entity that is used to generate a configuration parameter or an RRC entity; the RRC reconfiguration message cooperatively generated by the pico base station and the macro base station is uniformly sent by the macro base station to a user equipment. Therefore, the user equipment UE can support, only by establishing an SRB corresponding to the macro base station, an RRC reconfiguration message sent by the pico base station, thereby lowering design complexity and costs.
Abstract:
A subframe processing method and device are disclosed. The subframe processing method includes: if data packets that are not received by an evolved NodeB (eNB) include at least two consecutive Multimedia Broadcast Multicast Service (MBMS) data packets to be scheduled in a Dynamic Schedule Period (DSP) by the eNB, setting a subframe of the eNB that is used to transmit Dynamic Schedule Information (DSI) corresponding to the DSP to null. When the eNB finds that consecutive MBMS data packets are lost and/or that a type 0 Protocol Data Unit (PDU) group is lost, a subframe used to transmit the DSI may be set to null, thereby preventing the eNB from transmitting incorrect DSI which may interfere with other eNBs and cause incorrect data receiving of a user equipment (UE).
Abstract:
Embodiments of the present invention provide a communication method and a communications device. The method includes: generating, by a first communications device, a MAC PDU data packet, where the MAC PDU data packet includes at least one first-type MAC CE, each first-type MAC CE is used to carry information about multiple secondary serving cells, and the first communications device determines a location of the first-type MAC CE in the MAC PDU data packet according to a secondary serving cell corresponding to the first-type MAC CE; and sending, by the first communications device, the MAC PDU data packet to a second communications device, so that the second communications device obtains the first-type MAC CE, and determines, according to the location of the first-type MAC CE in the MAC PDU data packet, the secondary serving cell corresponding to the first-type MAC CE.
Abstract:
The present invention provides a method and an apparatus for sending uplink/downlink scheduling information, and a method and an apparatus for receiving uplink/downlink scheduling information. The method for sending downlink scheduling information includes: determining, in downlink subframes on a second carrier, a first downlink subframe, in which at time corresponding to the first downlink subframe, a subframe on a first carrier is an uplink subframe; and sending, on a fifth downlink subframe on the first carrier, downlink scheduling information corresponding to the first downlink subframe on the second carrier to a terminal, in which time corresponding to the fifth downlink subframe is before the time corresponding to the first downlink subframe. The present invention achieves the purpose of performing uplink and downlink scheduling on a second carrier through a first carrier bearing a PDCCH.
Abstract:
Embodiments of the present invention disclose a method, a base station, and a system for sending RRC signaling, and in the method for sending RRC signaling provided in the embodiments of the present invention, a pico base station and a macro base station participate in configuration and generation of an RRC reconfiguration message; the pico base station establishes only one RRC entity that is used to generate a configuration parameter or an RRC entity; the RRC reconfiguration message cooperatively generated by the pico base station and the macro base station is uniformly sent by the macro base station to a user equipment. Therefore, the user equipment UE can support, only by establishing an SRB corresponding to the macro base station, an RRC reconfiguration message sent by the pico base station, thereby lowering design complexity and costs.
Abstract:
A subframe processing method and device are disclosed. The subframe processing method includes: if data packets that are not received by an evolved NodeB (eNB) include at least two consecutive Multimedia Broadcast Multicast Service (MBMS) data packets to be scheduled in a Dynamic Schedule Period (DSP) by the eNB, setting a subframe of the eNB that is used to transmit Dynamic Schedule Information (DSI) corresponding to the DSP to null. When the eNB finds that consecutive MBMS data packets are lost and/or that a type 0 Protocol Data Unit (PDU) group is lost, a subframe used to transmit the DSI may be set to null, thereby preventing the eNB from transmitting incorrect DSI which may interfere with other eNBs and cause incorrect data receiving of a user equipment (UE).
Abstract:
A method for data transmission, comprising: receiving, by a device, a paging message, and determining an opportunity for acquiring an uplink transmission resource, by basing on a subframe for receiving the paging message; acquiring, by the device, an uplink transmission resource at the opportunity for acquiring the uplink transmission resource; and reporting, by the device, user data in the uplink transmission resource, by using a time advance that is stored in the device itself and that corresponds to a current position. According to the embodiments of the present invention, no random access is required when the MTC device transmits uplink data, and no RRC connection or user plane bearer is to be established, which greatly simplifies the procedures of data transmission for the device, and the device can quickly and high-efficiently transmit uplink data, thereby improving the transmission efficiency, and reducing the signaling load of the base station.