Abstract:
The present disclosure relates to stripe management methods, storage systems, stripe management apparatuses, and storage mediums. In one example method, check units in a plurality of stripes are obtained. A first stripe of the plurality of stripes complies with a first erasure code ratio. A new check unit is generated based on the check units in the plurality of stripes. The new check unit and data units in the plurality of stripes belong to a new stripe, the new stripe complies with a second erasure code ratio, and a quantity of data units corresponding to the first erasure code ratio is less than a quantity of data units corresponding to the second erasure code ratio.
Abstract:
A transmitter includes a pilot loading apparatus, an optical modulator, and a pilot locking apparatus. The pilot locking apparatus is configured to determine a pilot operating point that is currently on a response curve and that is of the optical modulator, and a target initial amplitude of an electrical pilot signal. The pilot locking apparatus is further configured to control the pilot loading apparatus to adjust an initial amplitude of the electrical pilot signal to the target initial amplitude.
Abstract:
A system monitors optical performance of an optical link within an optical network. The system includes an optical transmitter having an expanded-spectrum pilot-tone modulator for modulating an expanded-spectrum pilot tone onto a high-speed data signal to generate an expanded-spectrum optical signal and an optical receiver for receiving the expanded-spectrum optical signal and for detecting and decoding the expanded-spectrum pilot tone to enable monitoring of the optical performance of the optical link.
Abstract:
An optical device with integrated Optical Time Domain Reflectometer (OTDR) functionality and method for the same is provided. The optical device includes a transmitter and an Optical Time Domain Reflectometer (OTDR) module, The transmitter is configured to generate an Optical Time Domain Reflectometer (OTDR)-modulated optical supervisory channel (OSC) signal by applying an OTDR modulation to an optical supervisory channel (OSC) signal using an OTDR signal and to transmit the OTDR-modulated OSC signal. The OTDR module is configured to generate the OTDR signal, to monitor a returned light signal, to determine transmitter noise compensation information, and to generate OTDR trace information using transmitter noise compensation information and the monitored returned light signal.
Abstract:
An optical device with integrated Optical Time Domain Reflectometer (OTDR) functionality and method for the same is provided. The optical device includes a transmitter and an Optical Time Domain Reflectometer (OTDR) module, The transmitter is configured to generate an Optical Time Domain Reflectometer (OTDR)-modulated optical supervisory channel (OSC) signal by applying an OTDR modulation to an optical supervisory channel (OSC) signal using an OTDR signal and to transmit the OTDR-modulated OSC signal. The OTDR module is configured to generate the OTDR signal, to monitor a returned light signal, to determine transmitter noise compensation information, and to generate OTDR trace information using transmitter noise compensation information and the monitored returned light signal.
Abstract:
A system monitors optical performance of an optical link within an optical network. The system includes an optical transmitter having an expanded-spectrum pilot-tone modulator for modulating an expanded-spectrum pilot tone onto a high-speed data signal to generate an expanded-spectrum optical signal and an optical receiver for receiving the expanded-spectrum optical signal and for detecting and decoding the expanded-spectrum pilot tone to enable monitoring of the optical performance of the optical link.
Abstract:
A system monitors optical performance of an optical link within an optical network. The system includes an optical transmitter having an expanded-spectrum pilot-tone modulator for modulating an expanded-spectrum pilot tone onto a high-speed data signal to generate an expanded-spectrum optical signal and an optical receiver for receiving the expanded-spectrum optical signal and for detecting and decoding the expanded-spectrum pilot tone to enable monitoring of the optical performance of the optical link.
Abstract:
A transmitter includes a pilot loading apparatus, an optical modulator, and a pilot locking apparatus. The pilot locking apparatus is configured to determine a pilot operating point that is currently on a response curve and that is of the optical modulator, and a target initial amplitude of an electrical pilot signal. The pilot locking apparatus is further configured to control the pilot loading apparatus to adjust an initial amplitude of the electrical pilot signal to the target initial amplitude.
Abstract:
In a data storage method, a storage system comprises first and second medium layers for data storage, wherein the performance of the first medium layer is different from the performance of the second medium layer. Based on the performance difference between the two layers, the storage system stores data in the first medium layer and the second medium layer based on different erasure code ratios. The different erasure code ratios correspond to different write amplification, and result in different storage space utilization.
Abstract:
In a data storage method, a storage system comprises first and second medium layers for data storage, wherein the performance of the first medium layer is different from the performance of the second medium layer. Based on the performance difference between the two layers, the storage system stores data in the first medium layer and the second medium layer based on different erasure code ratios. The different erasure code ratios correspond to different write amplification, and result in different storage space utilization.