Abstract:
An integrated process for production of ultra low sulfur products of high octane gasoline, high aromatic naphtha and high Cetane Diesel from high aromatic middle distillate range streams from any cracker units such as Light Cycle Oil (LCO) stream of Fluid catalytic cracking (FCC) units and comprising of subjecting the feed boiling between 200 to 400° C. and having at least 30 wt % multi-ring aromatics content subjected to hydrotreating for removal of heteroatoms like sulfur and nitrogen and at a pressure sufficient only for saturation of one ring of multi-ring aromatics. The effluent from hydrotreating is subjected to hydrocracking at same pressure of hydrotreating step above for selective opening of saturated ring of multi-ring aromatics. The effluent from hydrocracking is separated in CUT-1 boiling between 35 to 70° C., CUT-2 boiling between 70 to 200° C. in which the monoaromatics and alkylated monoaromatics are concentrated and CUT-3 boiling above 200° C. in which concentration of saturates i.e. paraffins and naphthenes significantly increased. The CUT-3 is selectively oxidized in selective oxidation step in presence of catalyst, an oxidizing agent and operating conditions such that it results in diesel product with more enhanced Cetane.
Abstract:
The present invention relates to a liquid phase additive comprising an alkyl nitrate; a petroleum sulphonates; an aliphatic, aromatic, cyclohexylamines or hetroalkylated lower amines; a hindered phenol based compounds; a phosphate esters and an aliphatic alcohols for use in delayed coking process with decreased coke yield and increased yield of liquid and/or gaseous product and a process for preparing the liquid phase additive. The present invention also relates to a process for thermal cracking of petroleum residue producing petroleum coke and lighter hydrocarbon products by using liquid phase additive.
Abstract:
An apparatus which is an integral hardware consisting of an annular downer reactor and a concentric upflow riser regenerator for catalytic cracking of hydrocarbon feed to is disclosed. The annular downer reactor terminates in annular stripper which is also concentric with the regenerator. The regenerator, reactor and stripper are in fluid connection with each other. The apparatus is highly compact and provides efficient contact between circulating catalyst and hydrocarbon feed. The proposed hardware includes a novel radial distributor for providing improved control and radial distribution of catalyst inside the downflow reactor. The radial distributor has equal numbers of stationary and movable parts placed one after another to cover the entire annular opening at the bottom of the regenerated catalyst vessel. The radial distributor is concentric with regenerator and located between the catalyst holding vessel and the reactor. A process for catalytic cracking using the invented apparatus is also disclosed.