Abstract:
A ferroelectric memory is provided. The ferroelectric memory includes a substrate, a first conductive layer disposed on the substrate, a patterned oxide layer disposed on the first conductive layer and the substrate, exposing a part of the first conductive layer, a second conductive layer disposed on the exposed first conductive layer and the patterned oxide layer, an antiferroelectric layer disposed on the exposed first conductive layer and the second conductive layer, a ferroelectric layer disposed on the second conductive layer and located on the antiferroelectric layer, a conductive oxide layer disposed between the antiferroelectric layer, and a third conductive layer disposed on the conductive oxide layer and between the ferroelectric layer.
Abstract:
A ferroelectric memory is provided. The ferroelectric memory includes a first electrode layer having a dominant crystallographic orientation of (110) or (220), a second electrode layer opposite the first electrode layer, wherein the second electrode layer has a dominant crystallographic orientation of (110) or (220), and a ferroelectric layer disposed between the first electrode layer and the second electrode layer, wherein the ferroelectric layer has a dominant crystallographic orientation of (111).
Abstract:
A resistive random access memory and a method for fabricating the same are provided. The method includes providing a structure comprising a substrate, a bottom electrode disposed on the substrate, a metal oxide layer disposed on the bottom electrode, and an oxygen atom gettering layer disposed on the metal oxide layer; and subjecting the structure to a thermal treatment, driving the oxygen atoms of the metal oxide layer to migrate into and react with the oxygen atom gettering layer, resulting in a plurality of oxygen vacancies within the metal oxide layer.