摘要:
This disclosure pertains to a system for sound capture and generation via nasal vibration. An example system to capture and generate sound may comprise at least a frame wearable by a user, sensing circuitry mounted to the frame and a device also mounted to the frame. The sensing circuitry may sense voice vibration induced in the user's nose by the user's voice, generate an electronic signal based on the sensed voice vibration and induce audio vibration in the nose based on audio data. The device may be to at least control the operation of the sensing circuitry. The sensing circuitry may comprise at least one piezoelectric diaphragm to generate the electronic signal and induce the audio vibration. In at least one example implementation, the frame may be for eyeglasses and may comprise at least one nosepiece structure for contacting the nose, the at least one structure including the sensing circuitry.
摘要:
The present disclosure pertains to a system for voice capture via nasal vibration sensing. A system worn by a user may be able to sense vibrations through the nose of the user when the user speaks, generate an electronic signal based on the sensed vibration and generate voice data based on the electronic signal. In this manner, the system may capture a user's voice while also screening out external noise (e.g., based on the sound dampening properties of the human skull). An example system may include a wearable frame (e.g., eyeglass frame) on which is mounted at least one sensor and a device. The at least one sensor may sense vibration in the nose of a user and may generate the electronic signal based on the vibration. The device may receive the electronic signal from the at least one sensor and may generate voice data based on the electronic signal.
摘要:
A voice capture system worn by a user senses vibrations through the nose of the user when the user speaks. The voice capture system generates an electronic signal based on the sensed vibration and generate voice data based on the electronic signal. In this manner, the system may capture a user's voice while also screening out external noise (e.g., based on the sound dampening properties of the human skull). In one example, a voice capture system may include a wearable frame (e.g., eyeglass frame) on which is mounted at least one sensor and a device. The at least one sensor senses vibration in the nose of a user and generates the electronic signal based on the vibration. The device receives the electronic signal from the at least one sensor and generates voice data based on the electronic signal.
摘要:
A wearable gesture recognition device is disclosed that provides gesture recognition for gestures that may include a hold or steady-state component, and may account and adapt for real-time fit-level changes. The wearable gesture recognition device may integrate a photoplethysmographic (PPMG) and a piezoelectric (PZE) sensor such that respective sensor signals may be used individually, or in concert for gesture recognition. Thus the wearable gesture recognition device generally disclosed herein may advantageously perform gesture recognition through the fusion of PPMG and PZE signals. To support continuous gesture recognition, the wearable gesture recognition device may use a low-power activity detection scheme that analyzes a PZE signal prior to higher-power gesture classification. Moreover, the wearable gesture recognition device may provide power management by controlling a duty-cycle of the PPMG sensor without necessarily reducing recognition performance. The PPMG sensor and the PZE sensor may be co-located and housed within a same sensor package.