Abstract:
A surgical instrument comprises a pair of jaw members comprising a first jaw member comprising a groove along a length portion of the first jaw member, the groove extending from a gripping surface of the first jaw member in a first direction, and a slot along the length portion of the first jaw member and extending from the groove in a second direction, the second direction being different than the first direction. The instrument further comprises a cutting element comprising a first edge engaged with the groove and translatable along the groove; and a retaining feature coupled to the first edge of the cutting element and engaged with the slot, the retaining feature remains engaged with the slot throughout a range of translation of the cutting element. The cutting element is translatable along the groove independently from a movement of the pair of jaw members between open and closed positions.
Abstract:
An electrically energized medical instrument uses one or more drive cables to both actuate mechanical components of a wrist mechanism or an effector and to electrically energize the effector. Electrical isolation can be achieved using an insulating main tube through which drive cables extend from a backend mechanism to the effector, an insulating end cover that leaves only the desired portions of the effector exposed, and one or more seals to prevent electrically conductive liquid from entering the main tube. Component count and cost may be further reduced using a pair of pulleys that are shared by four drive cables.
Abstract:
In one embodiment of the invention, a replaceable electrosurgical end effector cartridge is provided to couple to a mechanical wrist of a surgical instrument for a robotic surgical system. The replaceable electrosurgical end effector cartridge includes two pluggable end effectors and a pair of spring latches. The two end effectors are moveable end effectors having a jaw portion, an off-center portion, and a base portion in one embodiment. The replaceable electrosurgical end effector cartridge may further include a fastener to rotatably couple the end effectors together.
Abstract:
Systems and methods of controlled grasping and energy delivery include a computer-assisted device. The computer-assisted device includes an end effector and one or more processors. The end effector includes a first jaw, a second jaw, and a plurality of electrodes for delivering energy. The one or more processors are configured to grasp a material using the first jaw and the second jaw, determine characteristics of the grasp, determine characteristics of the material, and control one or more of the grasp or energy delivery by the plurality of electrodes based on the determined characteristics of the grasp and the determined characteristics of the material. According to some embodiments, the characteristics of the material include one or more of thermal, dielectric, or stiffness of the material. In some embodiments, the characteristics of the grasp include one or more of applied pressure, jaw angle, jaw separation, force, torque, or wrist articulation.
Abstract:
A surgical instrument comprises an end effector coupled to a distal end of a shaft. The end effector comprises a pair of jaw members configured to be moved relative to each other between open and closed positions, and a cutting element configured to cut material gripped between the jaw members. The cutting element is further configured to translate between and along a lengthwise direction of the jaw members. The cutting element and a first jaw member comprise complementary retaining features that cooperate to retain the cutting element in a position held by the first jaw member throughout a range of motion of the jaw members between the open and the closed position.
Abstract:
An electrically energized medical instrument uses one or more drive cables to both actuate mechanical components of a wrist mechanism or an effector and to electrically energize the effector. Electrical isolation can be achieved using an insulating main tube through which drive cables extend from a backend mechanism to the effector, an insulating end cover that leaves only the desired portions of the effector exposed, and one or more seals to prevent electrically conductive liquid from entering the main tube. Component count and cost may be further reduced using a pair of pulleys that are shared by four drive cables.
Abstract:
A method of operating an end effector of a surgical instrument includes supplying voltage to a motor disposed in a transmission mechanism of a surgical instrument having a shaft and an end effector at a distal end of the shaft; moving a component of the end effector between a first position and a second position via a drive system coupled to the motor; and placing a limit switch in a first state during moving of the end effector component, and in a second state when the end effector component is at one of the first position or the second position.
Abstract:
A cover for an electrosurgical instrument having a wrist structure and an end effector is provided. The cover includes a hollow elongated structure, which includes a tip cover portion and a base cover portion integrally connected to the tip cover portion. The tip cover portion has a distal end with an opening therethrough sized to receive the end effector of the electrosurgical instrument and is composed of a first, electrically insulative material having a flexibility sufficient to allow the end effector to be manipulated while the end effector is received in the opening. The base cover portion is composed of a second material having a higher tear strength than the first material. The tip cover portion and the base cover portion overlap at an overlap region configured to receive the wrist structure of the electrosurgical instrument when the end effector is received in the opening.
Abstract:
An electrically energized medical instrument uses one or more drive cables to both actuate mechanical components of a wrist mechanism or an effector and to electrically energize the effector. Electrical isolation can be achieved using an insulating main tube through which drive cables extend from a backend mechanism to the effector, an insulating end cover that leaves only the desired portions of the effector exposed, and one or more seals to prevent electrically conductive liquid from entering the main tube. Component count and cost may be further reduced using a pair of pulleys that are shared by four drive cables.
Abstract:
A method of controlling a surgical instrument comprising an end effector may comprise detecting a first signal indicating that an end effector component of a surgical instrument is positioned between a first position and a second position; and automatically controlling operation of the end effector component when a second signal is not detected within a predetermined delayed response time period after detecting the first signal, wherein the second signal indicates that the end effector component is in one of the first position or the second position.