摘要:
An information processing device includes a first calculation unit which calculates a score of each sample image including a positive image in which an object as an identification object is present and a negative image in which the object as the identification object is not present, for each weak identifier of an identifier including a plurality of weak identifiers, a second calculation unit which calculates the number of scores when the negative image is processed, which are scores less than a minimum score among scores when the positive image is processed; and an realignment unit which realigns the weak identifiers in order from a weak identifier in which the number calculated by the second calculation unit is a maximum.
摘要:
A face image processing apparatus selects feature points and feature for identifying a person through statistical learning. The apparatus includes input means for inputting a face image detected by arbitrary face detection means, face parts detection means for detecting the positions of face parts in several locations from the input face image, face pose estimation means for estimating face pose based on the detected positions of face parts, feature point position correcting means for correcting the position of each feature point used for identifying the person based on the result of estimation of face pose by the face pose estimation means, and face identifying means for identifying the person by calculating a feature of the input face image at each feature point after position correction is performed by the feature point position correcting means and checking the feature against a feature of a registered face.
摘要:
An information processing device includes a first calculation unit which calculates a score of each sample image including a positive image in which an object as an identification object is present and a negative image in which the object as the identification object is not present, for each weak identifier of an identifier including a plurality of weak identifiers, a second calculation unit which calculates the number of scores when the negative image is processed, which are scores less than a minimum score among scores when the positive image is processed; and an realignment unit which realigns the weak identifiers in order from a weak identifier in which the number calculated by the second calculation unit is a maximum.
摘要:
A robot includes a face extracting section for extracting features of a face included in an image captured by a CCD camera, and a face recognition section for recognizing the face based on a result of face extraction by the face extracting section. The face extracting section is implemented by Gabor filters that filter images using a plurality of filters that have orientation selectivity and that are associated with different frequency components. The face recognition section is implemented by a support vector machine that maps the result of face recognition to a non-linear space and that obtains a hyperplane that separates in that space to discriminate a face from a non-face. The robot is allowed to recognize a face of a user within a predetermined time under a dynamically changing environment.
摘要:
An image processing apparatus includes: an image feature outputting unit that outputs each of image features in correspondence with a time of the frame; a foreground estimating unit that estimates a foreground image at a time s by executing a view transform as a geometric transform on a foreground view model and outputs an estimated foreground view; a background estimating unit that estimates a background image at the time s by executing a view transform as a geometric transform on a background view model and outputs an estimated background view; a synthesized view generating unit that generates a synthesized view by synthesizing the estimated foreground and background views; a foreground learning unit that learns the foreground view model based on an evaluation value; and a background learning unit that learns the background view model based on the evaluation value by updating the parameter of the foreground view model.
摘要:
A data processing apparatus includes an obtaining unit for obtaining time-series data, an activity model learning unit for learning an activity model representing a user activity state as a stochastic state transition model from the obtained time-series data, a recognition unit for recognizing a current user activity state by using the learned activity model, and a prediction unit for predicting a user activity state after a predetermined time elapses from a current time from the recognized current user activity state, wherein the prediction unit predicts the user activity state as an occurrence probability, and calculates the occurrence probabilities of the respective states on the basis of the state transition probability of the stochastic state transition model to predict the user activity state, while it is presumed that observation probabilities of the respective states at the respective times of the stochastic state transition model are an equal probability.
摘要:
A data processing apparatus includes an obtaining unit configured to obtain time-series data from a wearable sensor, an activity model learning unit configured to learn an activity model representing a user activity state as a stochastic state transition model from the obtained time-series data, a recognition unit configured to recognize a current user activity state by using the activity model of the user obtained by the activity model learning unit, and a prediction unit configured to predict a user activity state after a predetermined time elapses from a current time from the current user activity state recognized by the recognition unit.
摘要:
A robot includes a face extracting section for extracting features of a face included in an image captured by a CCD camera, and a face recognition section for recognizing the face based on a result of face extraction by the face extracting section. The face extracting section is implemented by Gabor filters that filter images using a plurality of filters that have orientation selectivity and that are associated with different frequency components. The face recognition section is implemented by a support vector machine that maps the result of face recognition to a non-linear space and that obtains a hyperplane that separates in that space to discriminate a face from a non-face. The robot is allowed to recognize a face of a user within a predetermined time under a dynamically changing environment.
摘要:
A robot apparatus (1) includes leg blocks (3A to 3D), head block (4), etc. as a moving part (16), a motion controller (102), learning unit (103), prediction unit (104) and a drive unit (105). When the moving part (106), any of the blocks, is operated from outside, the learning unit (103) learns a time-series signal generated due to the external operation. The motion controller (102) and drive unit (105) control together the moving part (106) based on a signal generated at the moving part (106) due to an external force applied to the robot apparatus (1) and a signal having already been learned by the learning unit (103) to make an action taught by the user. The prediction unit (105) predicts whether the moving part (106) makes the taught action according to the initial signal generated at the moving part (106) due to the applied external force. Thus, the robot apparatus (1) can learn an action taught by the user and determine an external force-caused signal to make the taught action.
摘要:
An image processing apparatus includes: an image feature outputting unit that outputs each of image features in correspondence with a time of the frame; a foreground estimating unit that estimates a foreground image at a time s by executing a view transform as a geometric transform on a foreground view model and outputs an estimated foreground view; a background estimating unit that estimates a background image at the time s by executing a view transform as a geometric transform on a background view model and outputs an estimated background view; a synthesized view generating unit that generates a synthesized view by synthesizing the estimated foreground and background views; a foreground learning unit that learns the foreground view model based on an evaluation value; and a background learning unit that learns the background view model based on the evaluation value by updating the parameter of the foreground view model.