Abstract:
The encoder includes a plurality of slit tracks, a point light source, two first light-receiving arrays, two second light-receiving arrays, and a third light-receiving array. The plurality of slit tracks respectively comprises a plurality of reflection slits arranged along a measurement direction. The point light source is configured to emit diffusion light to the plurality of slit tracks. The two first light-receiving arrays are disposed sandwiching the point light source in a width direction substantially orthogonal to the measurement direction. The two second light-receiving arrays are disposed sandwiching the point light source in the measurement direction. The third light-receiving array is configured to receive light reflected by the slit track comprising an incremental pattern that differs in pitch from other incremental patterns, and is disposed at a position in a direction where the first light-receiving array is disposed than the point light source.
Abstract:
An encoder includes a scale and a sensor. The scale has first and second absolute patterns. The sensor includes a light source, and first and second absolute light receivers. The first and second absolute light receivers receive light from the first and second absolute patterns, respectively. The first absolute light receiver receives light from the first pattern and includes first and second light receiving elements. Each first light receiving elements outputs a first signal with a first phase. Each second light receiving elements outputs a first signal with a second phase. The first and second light receiving elements are arranged alternately. The second absolute light receiver includes third and fourth light receiving elements. Each third light receiving element outputs a second signal with the first phase. The third and fourth light receiving elements are arranged alternately. Each fourth light receiving element outputs a second signal with the second phase.
Abstract:
An encoder includes a measurement target which is coupled to a motor, a module which is positioned relative to the measurement target and generates signals based on motion of the measurement target, and a control device which generates and outputs position data based on the signals from the module and includes a position detector, an abnormality detector, a cause analyzer, a non-volatile memory, and a non-volatile memory controller. The position detector detects a position of the motor, the abnormality detector detects an abnormality based on state information including a state of the position detector, the cause analyzer analyzes the state information when the abnormality detector detects the abnormality such that a cause of the abnormality detected by the abnormality detector is identified, and the non-volatile memory controller stores in the non-volatile memory a result of analysis obtained by the cause analyzer.
Abstract:
An encoder includes a plurality of slit tracks, a point light source, a first to third light-receiving arrays. The plurality of slit tracks respectively comprises a plurality of reflection slits. The point light source emits diffusion light to the plurality of slit tracks. The first light-receiving array receives light reflected by the slit track comprising an incremental pattern. The second light-receiving array receives light reflected by the slit track comprising an incremental pattern longer in pitch than other incremental patterns, and is disposed at a position on a side of a direction where the point light source is disposed, than the first light-receiving array, The third light-receiving array receives light reflected by the slit track comprising an absolute pattern, and is disposed at a position on a side of a direction where the point light source is disposed, than the first light-receiving array.
Abstract:
An encoder includes: an optical module that detects angular position information indicating an angular position of a rotating disk within one rotation thereof; a magnetic detecting unit that detects multi-rotation information indicating the number of rotations of the disk; a battery that supplies a power to the magnetic detecting unit when an external power is not supplied to the encoder; and a connector that connects connection terminals of the battery to a substrate to which at least one of the optical module and the magnetic detecting unit is connected, via solders in contact with the connection terminals.
Abstract:
An encoder includes a disc and a sensor. The disc has a circular surface with a central axis and is rotatable around the central axis. The disc has a slit row provided on the circular surface. The slit row includes slits arranged in a circumferential direction of the circular surface around the central axis and in a radial direction of the circular surface. The sensor is provided opposite to the slit row on circular surface. The sensor has a first light receiver and a second light receiver. The first light receiver is configured to output a first light receiving signal as the slit row rotates along the circumferential direction when the disc rotates around the central axis. The second light receiver is configured to output a second light receiving signal as the slit row moves along the radial direction when the disc rotates around the central axis.
Abstract:
An encoder includes a scale and a sensor. The scale has first and second absolute patterns. The sensor includes a light source, and first and second absolute light receivers. The first and second absolute light receivers receive light from the first and second absolute patterns, respectively. The first absolute light receiver receives light from the first pattern and includes first and second light receiving elements. Each first light receiving elements outputs a first signal with a first phase. Each second light receiving elements outputs a first signal with a second phase. The first and second light receiving elements are arranged alternately. The second absolute light receiver includes third and fourth light receiving elements. Each third light receiving element outputs a second signal with the first phase. The third and fourth light receiving elements are arranged alternately. Each fourth light receiving element outputs a second signal with the second phase.
Abstract:
An encoder includes a first disc and a second disc, a first detector, a second detector, a rotation count detector, and a sender. The first disc and the second disc are mounted on a rotation shaft of a motor. The first detector is configured to detect a rotation position of the first disc within one rotation of the first disc. The second detector is configured to detect that the second disc has made one rotation. The rotation count detector is configured to count a rotation count of the second disc based on an output from the second detector. The sender is configured to send sending data including the rotation position and the rotation count.
Abstract:
A sensor includes an upper-level connection port, a lower-level connection port, a command receiver, a wait time period setter, and a motor-related information obtainer. The upper-level connection port is configured to communicate with an upper-level sensor or an upper-level controller. The lower-level connection port is configured to communicate with a lower-level sensor. The command receiver is configured to receive a command from the upper-level controller. The wait time period setter is configured to set a wait time period based on an order of connection of at least the upper-level sensor or the upper-level controller, the sensor, and the lower-level sensor. The motor-related information obtainer is configured to obtain motor-related information, which relates to a motor, at a timing determined by the command and at a timing based on the wait time period.
Abstract:
Reflected light can be effectively utilized by increasing a light receiving area. Incremental light receiving element groups are separated and arranged in the circumferential direction of a rotating unit while placing a light source therebetween. First and second absolute light receiving element groups are arranged at both sides of the outside and inside of the light source in the radial direction of the rotating unit. As a result, first and second absolute light receiving elements are continuously arranged, and also the incremental light receiving element groups and the absolute light receiving element groups can be arranged to surround the periphery of the light source from four directions.