Abstract:
An image forming apparatus includes a developer information acquisition unit. The developer information acquisition unit performs a developer deterioration information acquisition operation. In the developer deterioration information acquisition operation, the developer information acquisition unit acquires a tilt of a measurement straight line representing the relationship between the change amount of the frequency in a first measurement toner image forming operation and the density change amount of the measurement toner image based on the change amount of the frequency in the first measurement toner image forming operation and a result of detecting density of the measurement toner image in a density detecting unit, and acquires a toner charging amount based on the acquired tilt of the measurement straight line and the reference information in the storage unit so as to acquire information relating to deterioration of developer based on the acquired toner charging amount.
Abstract:
A developing device includes a developer container, a first stirring member, a second stirring member, and a developer carrying member. The second stirring member includes a second transport blade for transporting developer inside a second transport chamber, a regulating portion formed next to, on the downstream side of, the second transport blade in the transport direction of the developer inside the second transport chamber and formed by a transport blade that transports developer in the opposite direction to the second transport blade, a discharge blade formed next to, on the downstream side of, the regulating portion in the transport direction of the developer and transporting developer in the same direction as the second transport blade to discharge the developer through the developer discharge port, and an annular portion arranged at least either between the second transport blade and the regulating portion or between the regulating portion and the discharge blade.
Abstract:
A developing device includes a housing, a development roller, and a roller gear. The roller gear is disposed at one axial end of the development roller and transmits a rotational drive force to the development roller. The development roller includes a sleeve and a coating layer. The coating layer is formed by dipping the sleeve in a dipping bath with the sleeve directed axially vertically. The development roller is mounted to the housing such that a lower axial end of the development roller at the time of the dipping is an opposite axial end to the one axial end at which the roller gear is disposed.
Abstract:
A developing device includes a housing, a developer carrier, a conveying member and a surface layer. The conveying member conveys the developer in the first conveying direction and supplies the developer to the developer carrier. The surface layer is arranged on the circumferential surface of the developer carrier and formed on a surface of a predetermined cylindrical base member. The surface layer is formed by an immersion method of immersing the base member in an immersion tank so that an axial direction of the base member extends along a vertical direction. A lower end side of the base member at the time of the immersion is arranged in a downstream side of the housing in the first conveying direction and an upper end side of the base member at the time of the immersion is arranged in an upstream side of the housing in the first conveying direction.
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. A resin coat layer has been formed on an outer circumferential surface of the roller main body, the resin coat layer being made of a resin material having electric conductivity. A product of resistance component Rs [Ω] and electrostatic capacitance component Cs [F] in AC impedance Z of the roller main body is in a range from 2.79×10−7 to 6.77×10−5, the AC impedance Z being obtained when an AC voltage of a predetermined frequency f is applied.
Abstract:
A developing device has a developer container, a first stirring/transporting member, a second stirring/transporting member, a developer carrying member, a developer supply port, a developer discharge port, a regulating portion, and a height adjustment opening. The developer container has a partition partitioning between first and second transport chambers, and communication portions through which the first and second transport chambers mutually communicate. The first and second stirring/transporting members stir and transport developer in the first and second transport chambers in opposite directions respectively. The regulating portion regulates movement of the developer toward a developer discharge port. The height adjustment opening is formed in the partition, and when the height of the developer in the second transport chamber is equal to or higher than a predetermined height, part of the developer passes through the height adjustment opening and moves to the first transport chamber.
Abstract:
A developing device includes a developer container, a first stirring member, a second stirring member, and a developer carrying member. The second stirring member includes a second transport blade for transporting developer inside a second transport chamber; a regulating portion having a first regulating blade formed next to, downstream of, the second transport blade in the transport direction of the developer inside the second transport chamber, for transporting developer in the same direction as the second transport blade with a smaller transporting force than the second transport blade, and a second regulating blade formed next to, downstream of, the first regulating blade for transporting developer in the opposite direction to the first regulating blade, and a discharge blade formed next to, downstream of, the second regulating blade for transporting developer in the same direction as the second transport blade to discharge the developer through the developer discharge port.
Abstract:
An inkjet recording apparatus includes a conveying belt and a control portion. The conveying belt includes a flushing area formed with an opening. During sheet conveyance, the control portion causes a recording head to perform flushing processing in which ink is discharged toward the opening of the flushing area not overlapping with the sheet. The control portion causes the recording head to perform, before discharging the ink, meniscus oscillation processing in which a meniscus of ink in each nozzle of the recording head is caused to oscillate. When causing the nozzle to perform the meniscus oscillation processing before the flushing processing, the control portion sets a number of oscillations of the meniscus oscillation processing based on an amount of time that has elapsed before the flushing processing to be performed this time since the flushing processing performed last time by the nozzle that performs the meniscus oscillation processing this time.
Abstract:
A developing device includes a housing, a developer carrier, a conveying member and a surface layer. The conveying member conveys the developer in the first conveying direction and supplies the developer to the developer carrier. The surface layer is arranged on the circumferential surface of the developer carrier and formed on a surface of a predetermined cylindrical base member. The surface layer is formed by an immersion method of immersing the base member in an immersion tank so that an axial direction of the base member extends along a vertical direction. A lower end side of the base member at the time of the immersion is arranged in a downstream side of the housing in the first conveying direction and an upper end side of the base member at the time of the immersion is arranged in an upstream side of the housing in the first conveying direction.
Abstract:
A developing device includes a developing container, a first stirring member and a second stirring member, and a developing roller. The developing container includes a first stirring chamber, a second stirring chamber, and a communication portion. The first stirring member includes a reverse spiral vane that conveys a developer in a direction reverse to a circulation direction. An air discharge duct is formed on a wall portion of the first stirring chamber opposed to the reverse spiral vane and in an area excluding the communication portion and discharges air from the first stirring chamber to an outside of the developing container via an air discharge port at a distal end of the air discharge duct. A filtration portion is disposed in the air discharge duct adjacently to the air discharge port and restricts leakage of the developer through the air discharge port.